
uAssign: Scalable Interactive Activities for Teaching the Unix
Terminal

Jacob Bailey
University of Illinois at Urbana-Champaign

Urbana, Illinois
jbbaile2@illinois.edu

Craig Zilles
University of Illinois at Urbana-Champaign

Urbana, Illinois
zilles@illinois.edu

ABSTRACT
We describe uAssign, an assignment system for teaching and as-
sessing command line terminal skills. uAssign allows instructors to
create auto-graded terminal assignments that require students to
perform a high-level action that can be completed in many ways.
Assignments can be randomized so that students can’t re-use old
solutions. uAssign is implemented via an in-browser terminal emu-
lator that uses WebSockets to connect to a Docker container. Per-
formance testing and its use in a large-enrollment lecture course
show that it is efficient enough to handle a large number of con-
current users. A survey of students shows significant improvement
in terminal skill confidence after using uAssign and that students
have a high level of satisfaction with uAssign assignments.

CCS CONCEPTS
• Applied computing → Education; Computer-assisted in-
struction; E-learning;

KEYWORDS
assessment, Unix, terminal, command-line, auto-grading, scalable
ACM Reference Format:
Jacob Bailey and Craig Zilles. 2019. uAssign: Scalable Interactive Activities
for Teaching the Unix Terminal. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (SIGCSE ’19), February 27-March
2, 2019, Minneapolis, MN, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3287324.3287458

1 INTRODUCTION
The continued increase in enrollment in computer science pro-
grams has created demand for scalable assessment technology for
homework and exams. Technology for code auto-grading and pla-
giarism detection are widely used, and recent research has explored
scalable techniques for giving personalized feedback on style and
design [10, 13]. This technology, however, has largely focused on
programming assignments, which is but only one part of being a
successful computing professional.

One of the areas that has not been given a lot of focus is ter-
minal skills. The terminal, or command-line, generally refers to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5890-3/19/02.
https://doi.org/10.1145/3287324.3287458

the text-based interface that exists on nearly all computers. At a
terminal, you have access to common utilities to perform actions
on the system (file management, program execution) without using
a graphical interface. A user can perform simple tasks, but also
construct more complicated commands to do things that would be
inefficient to do by hand. These sorts of skills are an important tool
in the toolbox of computing practitioners but are often relegated
to course Wiki pages and informal help from lab instructors, with
assessment either non-existent or only through basic testing with
multiple-choice quizzes.

In this paper, we describe uAssign (available as open source [5]),
a scalable approach to teaching and assessing Unix terminal skills.
In designing uAssign, we had four main goals:

(1) The assignments should provide an authentic terminal expe-
rience where students can explore the current state of the
machine and complete the assignments using many possible
strategies (i.e., not merely checking that the student typed
in a specific command).

(2) The platform should be flexible enough to support a wide
range of terminal assignments and, also, support randomiza-
tion so that unique problem instances can be given to each
student to prevent sharing solutions.

(3) The platform should have high availability and scale grace-
fully, preventing abuse and resource exhaustion independent
of user actions.

(4) Terminal assignments should be accessible to students in a
convenient, platform-independent manner, ideally available
through the the same interface that students are using for
their other online homework.

uAssign achieves these goals through the composition of a col-
lection of existing technologies, including Docker containers, Web-
Sockets, and an in-browser terminal emulator. Using uAssign, a
student will be able to open their browser and be presented with a
real, working terminal attached to a live system in which they can
complete their assignment, as shown in Figure 1.

Specifically, this paper makes the following contributions:

(1) We describe the design of the uAssign server, including its
management of container life cycles and its integration into
a representative web homework interface in Section 2, with
special attention to how to quickly provision containers in
Section 2.1 and security in Section 2.2.

(2) We present the results of a survey including information
on students’ prior terminal experience and the efficacy of
uAssign in teaching terminal skills.

(3) We present performance results demonstrating that uAssign
scales sufficiently for large enrollment classes.

https://doi.org/10.1145/3287324.3287458
https://doi.org/10.1145/3287324.3287458
https://doi.org/10.1145/3287324.3287458

Figure 1: An example uAssign session for an introductory
question demonstrating that the terminal has standard ca-
pabilities like top.

Additional implementation details and survey results can be
found in Bailey’s Master’s thesis [6].

2 DESIGN AND IMPLEMENTATION
The key idea for making terminal assignments that provide an
authentic terminal experience is to provide students access to an
actual terminal that they can interact with. The uAssign system does
this through running a Docker1 container (a light weight “virtual
machine”) for each student assignment on a server and providing
access to these containers through an in-browser terminal emulator.
This requires students to be on the Internet when they complete the
assignment, but provides low latency interaction with a terminal
in a secure, platform independent way.

In principle, uAssign’s software architecture could be paired
with any learning management system (LMS); the implementation
of uAssign that we describe below is for an embedding in the
PrairieLearn [18] LMS that is used for other assignments in the
course in which it was deployed.

The uAssign terminal assignment system is composed of three
independent parts, illustrated in Figure 2:

(1) The uAssign server (shown on the right), responsible for
managing the lifetimes of assignment instances and their
associated Docker containers on the server,

(2) A PrairieLearn server-side component (bottom left), respon-
sible for providing assignment specifications (randomly pa-
rameterized to prevent cheating) and recording completion
in the grade book, and

(3) A PrairieLearn client-side terminal interface (top left) that
mediates the interaction between the user and their con-
tainer.

The standard flow through the system begins with a request for
a new problem, causing the server-side PrairieLearn component to

1Docker is a popular container platform which makes use of a kernel’s isolation
features [1]. Core to Docker is its daemon (dockerd), which manages containers and
exposes a REST API, allowing a client to build images, create and manage containers,
as well as other container-related tasks. This library-like interface enables Docker to
be used as part of a system that wants to work with containers programmatically.

Figure 2: uAssign comprises three actors: (1) the LMS
(PrairieLearn) provides assignment specifications, (2) the
student’s web browser displays the terminal, and (3) the uAs-
sign server manages the Docker containers and mediates
communication between the student and their container.

construct an assignment specification. This specification consists of
a description of how the uAssign server should initialize the Docker
container, including what files and directories should be created
and any commands to be issued on the machine before control is
transferred over to the user. To make assignments unique between
users, we vary the names and contents of files and the names and
hierarchy of directories. Our implementation encodes the specifica-
tion as a JSON document with a UUID as a unique identifier and
provides the specification to the student’s web browser along with
the client-side code.

The browser forwards this assignment specification to the uAs-
sign server. Upon receipt, uAssign uses the provided UUID to see if
this assignment is already in progress, and, if not, creates the con-
tainer using the specification (discussed in detail in Section 2.1) and
an instance record to track the relationship between this assignment
specification and the container. If the instance record already exists,
perhaps because the student is returning from having navigated
away from the assignment, they are re-connected to their container.

The terminal session is then displayed in the student’s browser
using a series of components. On the client side, we use the hterm [2]
terminal emulator written in JavaScript and aWebSocket to commu-
nicate to the uAssign server. Since hterm only provides functions
to write data to the terminal and hooks to capture input text and
key combinations, as well as the terminal’s dimensions, we had to
write client side code to proxy data from hterm over the WebSocket.
The protocol we use to communicate between the client and the
server is one derived from the protocol used by terminado [9], an
application for proxying a terminal to a Python Tornado server.
The uAssign server then proxies the I/O to the container, using the
instance records to identify the correct container.

Currently, grading is accomplished through the use of “secrets”.
This is a design decision resulting from a desire to loosely couple
the uAssign server from the LMS that is hosting the assignments. In
some cases, the secret is discovered by doing the assignment (e.g.,
a grep assignment asks students to provide the name of the file
containing a given string). In other assignments, a grade executable
is placed in the container, which students can run to validate that
a task (e.g., the appropriate set of files were deleted) was done

correctly and dispense the secret. The secrets are unique for each
student and provided to the container as part of the assignment
specification. Students cut and paste the secrets from the terminal
window into the encompassing PrairieLearn window and press the
“Grade” button, then presented with their score.

When an assignment is graded, PrairieLearn sends the uAssign
server a “cleanup request”, which instructs the uAssign server to
cleanup any resources associated with that specific assignment
specification. These cleanup requests are provided on a best-effort
basis. The uAssign server will also deallocate resources for an as-
signment if it has been idle for a few hours.

The user interface also includes a “reset” button. When pressed,
the client will instruct the uAssign it to force an early cleanup of
the active instance. Once the instance has been removed, the client
will repeat sending its assignment specification. Since the instance
was removed, the student will be presented with another instance
of the same specification, effectively resetting the assignment.

2.1 Building containers faster than Dockerfiles
uAssign does not use Docker’s standard method of configuring
containers (Dockerfiles) because they are much too slow for our
purpose. Our use of Docker is very different from what its authors
intended. Docker was designed with the expectation of simultane-
ously running a large number of containers, but generally initializ-
ing those containers using a relatively small number of “images”.
As such, Docker does not optimize generating new images for
speed, but, rather, for minimizing storage and network bandwidth.
Docker images are internally organized into layers, where each
layer represents the difference between the current image and the
last, permitting significant sharing between similar images.

In uAssign, however, we want every container to have a unique
image, so that we can give slightly different versions of the assign-
ment to each student. In early versions, uAssign generated images
with templatized Dockerfiles, providing the specification as the
template’s context. But, Docker’s excessive I/O from generating
the layers – each directive in a Dockerfile adds a layer – created
problems both from a latency standpoint and caused I/O to become
a scalability bottleneck. Also, Dockerfiles’ use of syntax-significant
whitespace made templating fragile.

Instead, uAssign skips this build process altogether and uses a
custom JavaScript routine to perform actions directly on the target
container as directed by the assignment specification. In this way,
build time is reduced significantly. Our specifications even support
identifying which actions can be performed in parallel, whereas
Dockerfiles can only be executed one directive at a time.

We find that uAssign’s implementation results in a 2 to 3 times
speed up relative to a traditional Docker build. Figure 3 compares
the container build time (averaged across 50 runs), as measured on
the uAssign server, between our custom script (index.js) and the
straightforward Dockerfile implementation. Across a collection of
representative assignments, we find that uAssign’s implementation
is able to keep wait times in a tolerable range [15].

2.2 Security concerns and misuse protection
uAssign was designed to be as secure as possible while still pro-
viding students with an accurate environment to complete their

basic cp rmdir

Assignment

0

2

4

6

8

10

B
u

ild
ti

m
e

(s
ec

on
d

s)

index.js style

Dockerfile style

Figure 3: A comparison of build times using uAssign’s ac-
tions (index.js) and Docker’s own build system. The “basic”
assignment asks students to read a file and answer with its
contents. The “cp” assignment asks students to copy a file
from one location to another. The “rmdir” assignment asks
students to remove a directory. The “cp” and “rmdir” assign-
ments have longer build times because they involve building
a Go binary for grading.

assignments. Since uAssign gives a user access to a real container
on a real machine, special care must be taken to ensure that privi-
lege is not abused. uAssign, much like every other service which
operates on the open Internet, needs to protect against general
third-party attacks. As such, it implements standard security mea-
sures, including HTTPS (with built-in LetsEncrypt support for free
certificate issuance), Secure WebSockets, and a CORS policy.

But, in addition to those third-party attacks, uAssign also needs
to be able to protect against potential attacks by its users on the
assignments themselves, as well as the resources that the assign-
ments use. There are two main concerns: (1) students attempting to
get credit without completing the assignment, and (2) users using
the containers for something other than their intended purpose.

The most obvious point of attack for bypassing the assignment is
the assignment specification, which contains all of the information
needed to solve the problem, including the secret itself. Perhaps
surprisingly, our implementation of uAssign actually passes the
specification through the client browser in its effort to decouple
the uAssign server from PrairieLearn. To prevent the user from
accessing the contents of the specification, it is encrypted using
shared-key encryption via AES with HMAC-SHA-256 verification.

Additionally, during the development of the course material for
uAssign, we found that some students were able to extract strings
from our grading binaries (written in Go), giving them a very easy
way to obtain secrets. In order to mitigate this sort of attack, the
secrets are compiled in an obfuscated form (gzip’ed, then XORed
with a mask, and then base64 encoded), which the grading binary
can decode when it runs. While this method is not foolproof, it
would require more effort to bypass than to just do the assignment.

Because uAssign provides command line access to the containers
it hosts, we must make efforts to prevent the containers themselves
from being abused (e.g., to run Bitcoinminers or DDOS attacks). Our
container security has three main elements: (1) Docker-imposed

resource limits, (2) disconnecting the container from the network,
and (3) preventing simultaneous connections to a container.

Docker natively provides the following resource limiting fea-
tures [3]:

• Memory usage limits, by specifying a hard maximum in
bytes.

• CPU quotas, by specifying what percentage of the system a
container is allowed to use before being unscheduled.

• Process limits (similar to ulimit), specifying the maximum
number of processes a container can spawn.

The main resource that isn’t well limited is disk storage. Docker
has the ability to limit storage usage, but only via a global setting.
For example, setting the limit to 500 MB means that a container
which reaches 500 MB of data will no longer be able to write to its
filesystem. This cannot be customized per container, so the limit
must be set to the largest size they expect any container to use.

Docker also manages networking for its containers, creating
networks and virtual network adapters. In the case of uAssign,
networking is available to a container while it is being configured,
but is disabled before a student has access.

Finally, instances are only allowed to be connected to a single
terminal emulator at a time. If another client attempts to connect
to the same instance, the first connection is terminated, and the
second takes its place. This prevents uAssign from being used for
unintended purposes that involve multiple connections to the same
container, such as a make-shift chat room.

3 EXPERIMENTAL RESULTS
During the Fall 2017 and Spring 2018 semesters, uAssign was used
in a second programming class for CS majors. In was used by 127
and 264 students, respectively, in the Fall and Spring semesters.
The students were given five weekly homework assignments con-
taining 35 exercises that included directory navigation, listing, and
removing, file copying, moving, renaming, and deleting, hidden
files, file modification times, globbing, grep, tar and zip files, find,
pipes, and C compilation. Students on average take about 3 minutes
to do each exercise.

We conducted a survey during the Spring semester covering stu-
dent preferences of operating system, their confidence in terminal
skills, and uAssign’s usability, which is described in Section 3.1. In
Section 3.2, we describe an in-class stress test that we performed to
identify scalability bottlenecks.

3.1 Student Survey Results
With IRB approval, the survey was performed online and students
were incentivized to participate in the survey via a raffle of gift
cards. In total, 57 students participated out of an enrollment of 264,
constituting a respondent rate of 22%.

We asked students to self-rate their proficiency in the terminal
on a scale from 1 to 5 (from “no experience” to “very experienced”),
both before and after completing uAssign’s terminal assignments, as
shown in Figure 4. Over all respondents, we saw the mean increase
from 2.40 to 3.42 – an increase of 1.02 on a five point scale – from
completing the assignments. Breaking down the data by operating
system preference (Table 1), Windows users self-report benefiting
the most from the terminal assignments, followed by MacOS users.

1 2 3 4 5
0

10

20

30

#
of

st
ud

en
ts

before

1 2 3 4 5
0

10

20

30
after

Figure 4: Student responses to “Rate your proficiency with
the command line” before and after the terminal assign-
ments.

Users who used Linux as their primary operating system reported
no improvement, likely because they were already proficient.

We also see positive results with respect to the affective dimen-
sion. Students have very high perceptions of the utility of terminal
skills (mean: 4.67, std dev: .58), as shown in Figure 5. Students were
likewise satisfied with uAssign’s user interface (mean: 4.37, std dev:
.67, Figure 6 Perceptions of whether the assignments were good
use of their time were also positive, but not as strong (mean: 3.63,
std dev: .99, Figure 7).

Our survey suggests, however, that our assignments have likely
not yet given students enough practice with the terminal. Only 60%
of the participants stated that they felt confident they could use com-
mon terminal utilities, 40% still either disagree or are unsure (mean:
3.75, std dev: 1.11, Figure 8). When asked about their confidence
with reading --help and man pages, 35% of participants aren’t con-
fident (mean: 3.86, std dev: .97, Figure 9). Also, participants still
tend to prefer GUI tools to the command line for filesystem tasks
(mean: 3.46, std dev: 1.18, Figure 10).

3.2 Performance stress testing
The only heavyweight activity on the uAssign server is spinning
up new containers; once the container exists, it takes minimal
network bandwidth and CPU to handle the terminal interactions.
Spinning up containers became a significant bottleneck in our orig-
inal Dockerfile-based implementation in Fall 2017, with students
having to wait multiple minutes for their terminal to appear when
the server was loaded.

With the revised container-building implementation described
in Section 2.1, we stopped receiving performance complaints from
students in Spring 2018. While this was a clear improvement, we
weren’t confident that we had removed the bottleneck, since stu-
dents typically complete assignments on their own schedule over
the course of many days.

To observe the server’s behavior under controlled load, we per-
formed a pair of stress tests in Spring 2018, where students were
asked to access their terminal assignments simultaneously in lec-
ture. Each lecture section involved roughly 80 concurrent users
completing assignments with the uAssign server running on an
AWS t2.medium instance. In both tests, mean and median con-
tainer construction latency increased to around 15 seconds, which

Table 1: Self-reported improvement in terminal skill confidence, by operating system.

Primary Primary + Secondary

OS (% of participants) Avg. Improvement Secondary OS Avg. Improvement

Windows (54.39%) +1.323
Linux (15.79%) +1.889
N/A (36.84%) +1.095
MacOS (1.75%) +1.0

MacOS (40.35%) +0.739
N/A (28.07%) +0.875
Windows (3.51%) +0.5
Linux (8.77%) +0.4

Linux (5.26%) +0.0 Windows (5.26%) +0.0

1 2 3 4 5
0

10

20

30

40

#
of

st
ud

en
ts

Figure 5: “I believe terminal skills are
useful.”

1 2 3 4 5
0

10

20

30

40
#
of

st
ud

en
ts

Figure 6: “The terminal assignment sys-
temprovided a friendly user interface.”

1 2 3 4 5
0

10

20

30

40

#
of

st
ud

en
ts

Figure 7: “My time was well-spent com-
pleting terminal assignments.”

1 2 3 4 5
0

10

20

30

40

#
of

st
ud

en
ts

Figure 8: “I am confident that I can use
common terminal utilities.”

1 2 3 4 5
0

10

20

30

40

#
of

st
ud

en
ts

Figure 9: “I am confident that I can read
terminal utility ‘help’ documentation
(-h, --help) and man pages.”

1 2 3 4 5
0

10

20

30

40

#
of

st
ud

en
ts

Figure 10: “I prefer performing com-
mon filesystem tasks in a GUI, rather
than in the terminal.”

is tolerable, and the terminals had no noticeable latency once their
containers had been created.

These results make us comfortable running assignments with
uAssign for class sizes up to 500 students on t2.medium instance,
because the rate that students will construct containers is practically
limited by the rate at which they can complete the assignments,
even if all of the students were to wait to complete the assignments
until the deadline. We believe that a slightly larger AWS instance
with additional CPU and I/O bandwidth would be sufficient for
even the largest computing classes at our university. Data collected
on the uAssign host using collectl [17] shows that only CPU
utilization was significantly affected by the stress test as shown in
Figure 11; memory usage increased only a few hundred megabytes,
and network usage was negligible. Additionally, scalability could
be increased through the use of a filesystem with native Docker
storage support like btrfs, where no extra work is needed to create
a container’s storage space.

4 RELATEDWORK
Previous efforts to support the teaching and assessment of termi-
nal skills can be categorized into four main types: (1) self-guided
instruction tools, (2) traditional lessons with pencil/paper quizzes,
(3) the use of virtual machines to teach system administration, and
(4) web-based systems that present tasks for students with a means
for validating that the assignment was completed.

Included with UNIX v7, learn [12] created an interactive environ-
ment to teach terminal usage by interpreting “CAI” (computer aided
instruction) scripts. Lessons varied from basic command usage and
filesystem navigation to the C programming language. Intended
for self-guided instruction only, this software lacked any sort of
assessment outside of completion of a given lesson.

Terminal skills have also been taught using traditional in-class
lessons and hand-graded quizzes [11, 16]. Using quizzes (be they
paper or online) may not fully assess skills, relying on a student to
answer a question by statement, rather than perform some task.

250 300 350 400 450

0

20

40

60

80

100

CPU usage percentage

250 300 350 400 450
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Memory usage in GB

250 300 350 400 450

0

500

1000

1500

2000

Network activity, KB/s

Figure 11: CPU, memory, and network bandwidth usage during our first stress test. The X-axis indicates time in seconds, with
the stress test starting approximately 250 seconds after collectl was started.

Virtual machines are often used to teach system administration,
so that learners don’t break actual systems. “User Mode Linux” (U-
ML) [8] allows students to connect to a custom Linux derivative
running as a VM, over emulated serial lines provided by the VM
host, where students can perform administration tasks such as sim-
ulated system updates and service management. “Virtual Lab” uses
a web interface to provide access to its virtualized environment [7].
The client browser uses AJAX requests to send a user’s command
to the server. The server then uses SSH to run the command and
captures and returns the full output back to the user as an HTTP
response. This interface is not a “true” terminal, as it is not interac-
tive (i.e., you cannot run editors, live-updating programs like top,
or cancel execution). Neither system appears to integrate instant
feedback/auto-grading.

The final category of related work are the peers of uAssign,
web-based terminal assessment tools that permit randomization of
assignments and support for auto-grading. “Unix-training” presents
its lessons as a treasure hunt, where each step (e.g., compiling code,
creating shell pipelines, accessing remote systems over SSH) gives
you information to help you solve the next step [14]. Each student’s
path is unique to them, generated psuedorandomly (using some
hashing of user information), and interactions with a web app tracks
a student’s progress. Unlike uAssign, this system relies on students
having their own *NIX machines for course work.

The closest related work to uAssign is the concurrently devel-
oped TuxLab project [4]. Both uAssign and TuxLab work off of the
same core principle – exposing customized Docker containers to
students to complete terminal assignments. Both use instructor-
written JavaScript code to efficiently configure containers by di-
rectly performing tasks on the container before the student con-
nects. Both set resource limitations on the containers for perfor-
mance isolation and to prevent abuse; both set CPU/memory limits,
but uAssign’s current deployment also limits disk usage.

The main difference is that TuxLab is designed as a stand-alone
learning web app, where uAssign is designed to be integrated into
an existing LMS. This design choice gives TuxLab an extra level
of control and a more integrated user interface (a terminal on the
right, reference on the left) and allows the web app to grade the
container directly. uAssign design means that students don’t have
to learn an new interface (something they value according to the
survey), but necessitates the use of a grading binary installed in the
container for our current implementation.

In addition, TuxLab gives students access to its containers dif-
ferently than uAssign. TuxLab’s Docker containers run in Docker
Swarm. Students connect to containers via SSH (with an in-browser
SSH client) to an SSH proxy on the TuxLab server, which then
connects to the container. This is required due to the way Swarm
operates, abstracting containers to “services”, where the only in-
teraction with a container’s I/O is through Docker-collected logs
or though the Internet to a server running in that service, at an
IP address in the Swarm network that is essentially randomized.
A consequence of this design is that in the current implementa-
tion, TuxLab containers continue to have Internet access even after
setup, which opens up assignment instances to unwanted capabili-
ties such as package downloads (usurping any instructor-defined
setup), communication with outside help, or even malicious servers.
Also, since uAssign controls container lifetimes (instead of Swarm),
students can navigate away from a problem and return to their
container with all of their work still saved.

5 CONCLUSION AND FUTUREWORK
uAssign’s implementation demonstrates that authentic assessments
for terminal skills can be built in a scalable and secure manner. uAs-
sign gives instructors the opportunity to add terminal-based content
to their courses and computer-based exams [19, 20], without sac-
rificing flexibility in implementation. Through surveys, it’s clear
that there is a benefit for students, especially those who have not
been exposed to the command line and that the current workflow
is positive and worth continuing.

There is, however, work to still be done a few dimensions. First,
we’d like to extend the range and depth of assignments that have
been developed for uAssign. While our students reported signifi-
cant growth in terminal skills, most students still didn’t feel fully
comfortable with the terminal. We believe that additional and more
varied practice will help them develop that comfort.

Second, we plan to proliferate these terminal assignments to
other programming courses. First we will deploy them in other
introductory programming courses at our university that serve
other populations. Beyond that, we feel there is an opportunity to
develop a service that could be used at other universities.

Third, uAssign could be used to study how students learn ter-
minal skills and identify misconceptions. Because uAssign proxies
all input and output from its containers to students, we could log
the student actions and perform educational pattern mining and
qualitative analysis of these traces.

REFERENCES
[1] [n. d.]. Docker. https://www.docker.com/. Accessed: 2018-04-02.
[2] [n. d.]. hterm. https://chromium.googlesource.com/apps/libapps/+/master/hterm.

Accessed: 2018-04-01.
[3] [n. d.]. Limit a container’s resources | Docker Documentation. https://docs.

docker.com/config/containers/resource_constraints/. Accessed: 2018-04-02.
[4] [n. d.]. TuxLab. http://tuxlab.org. Accessed: 2018-03-18.
[5] [n. d.]. uAssign Github repository. https://github.com/jakebailey/ua.
[6] Jacob Bailey. 2018. uAssign: Scalable and flexible interactive activities for teaching

the UNIX terminal. Master’s thesis. University of Illinois at Urbana-Champaign,
http://hdl.handle.net/2142/101068.

[7] K. C. Bandi, A. K. Nori, V. Choppella, and S. Kode. 2011. A Virtual Laboratory for
Teaching Linux on the Web. In 2011 IEEE International Conference on Technology
for Education. 212–215. https://doi.org/10.1109/T4E.2011.41

[8] Renzo Davoli. 2004. Teaching Operating Systems Administration with User Mode
Linux. In Proceedings of the 9th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’04). ACM, New York, NY, USA,
112–116. https://doi.org/10.1145/1007996.1008027

[9] Jupyter development team and Ramalingam Saravanan. [n. d.]. terminado. https:
//github.com/jupyter/terminado. Accessed: 2018-04-01.

[10] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,
Loris D’Antoni, and Björn Hartmann. 2017. Writing Reusable Code Feedback
at Scale with Mixed-Initiative Program Synthesis. In Proceedings of the Fourth
(2017) ACM Conference on Learning @ Scale (L@S ’17). ACM, New York, NY, USA,
89–98. https://doi.org/10.1145/3051457.3051467

[11] Tyson Kendon and Ben Stephenson. 2016. Unix Literacy for First-Year Computer
Science Students. In Proceedings of the 21st Western Canadian Conference on
Computing Education (WCCCE ’16). ACM, New York, NY, USA, Article 14, 4 pages.
https://doi.org/10.1145/2910925.2910930

[12] Brian W. Kernighan and Michael E. Lesk. 1979. LEARN — Computer-Aided In-
struction on UNIX. In UNIX Programmer’s Manual. Vol. 2. https://s3.amazonaws.
com/plan9-bell-labs/7thEdMan/v7vol2a.pdf

[13] Joseph Bahman Moghadam, Rohan Roy Choudhury, HeZheng Yin, and Armando
Fox. 2015. AutoStyle: Toward Coding Style Feedback at Scale. In Proceedings of
the Second (2015) ACM Conference on Learning@ Scale. ACM, 261–266. https:
//doi.org/10.1145/2724660.2728672

[14] Matthieu Moy. 2011. Efficient and Playful Tools to Teach Unix to New Students.
In Proceedings of the 16th Annual Joint Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’11). ACM, New York, NY, USA, 93–97. https:
//doi.org/10.1145/1999747.1999776 Source code/wiki at http://matthieu-moy.fr/
spip/?Unix-training-a-set-of-tools-to.

[15] Fiona Fui-Hoon Nah. 2004. A study on tolerable waiting time: how
long are Web users willing to wait? Behaviour & Information Technol-
ogy 23, 3 (2004), 153–163. https://doi.org/10.1080/01449290410001669914
arXiv:https://doi.org/10.1080/01449290410001669914

[16] Lawrence Osborne. 1992. Teaching Cwith UNIX for College Credit to Professional
Programmers. SIGCSE Bull. 24, 4 (Dec. 1992), 43–48. https://doi.org/10.1145/
141837.141852

[17] Mark Seger. [n. d.]. collectl. http://collectl.sourceforge.net/. Accessed: 2018-04-02.
[18] MatthewWest, Geoffrey L. Herman, and Craig Zilles. 2015. PrairieLearn: Mastery-

based online problem solving with adaptive scoring and recommendations driven
by machine learning. In 2015 ASEE Annual Conference & Exposition. ASEE Con-
ferences, Seattle, Washington. https://peer.asee.org/24575.

[19] Craig Zilles, Robert Timothy Deloatch, Jacob Bailey, Bhuwan B. Khattar, Wade
Fagen, Cinda Heeren, David Mussulman, and MatthewWest. 2015. Computerized
Testing: A Vision and Initial Experiences. In 2015 ASEE Annual Conference &
Exposition. ASEE Conferences, Seattle, Washington. https://peer.asee.org/23726.

[20] C. Zilles, M. West, D. Mussulman, and T. Bretl. 2018. Making Testing Less Trying:
Lessons Learned from Operating a Computer-Based Testing Facility. In Frontiers
in Education. http://zilles.cs.illinois.edu/papers/zilles_cbtf_fie_2018.pdf

https://www.docker.com/
https://chromium.googlesource.com/apps/libapps/+/master/hterm
https://docs.docker.com/config/containers/resource_constraints/
https://docs.docker.com/config/containers/resource_constraints/
http://tuxlab.org
https://github.com/jakebailey/ua
https://doi.org/10.1109/T4E.2011.41
https://doi.org/10.1145/1007996.1008027
https://github.com/jupyter/terminado
https://github.com/jupyter/terminado
https://doi.org/10.1145/3051457.3051467
https://doi.org/10.1145/2910925.2910930
https://s3.amazonaws.com/plan9-bell-labs/7thEdMan/v7vol2a.pdf
https://s3.amazonaws.com/plan9-bell-labs/7thEdMan/v7vol2a.pdf
https://doi.org/10.1145/2724660.2728672
https://doi.org/10.1145/2724660.2728672
https://doi.org/10.1145/1999747.1999776
https://doi.org/10.1145/1999747.1999776
http://matthieu-moy.fr/spip/?Unix-training-a-set-of-tools-to
http://matthieu-moy.fr/spip/?Unix-training-a-set-of-tools-to
https://doi.org/10.1080/01449290410001669914
http://arxiv.org/abs/https://doi.org/10.1080/01449290410001669914
https://doi.org/10.1145/141837.141852
https://doi.org/10.1145/141837.141852
http://collectl.sourceforge.net/
http://zilles.cs.illinois.edu/papers/zilles_cbtf_fie_2018.pdf

	Abstract
	1 Introduction
	2 Design and implementation
	2.1 Building containers faster than Dockerfiles
	2.2 Security concerns and misuse protection

	3 Experimental Results
	3.1 Student Survey Results
	3.2 Performance stress testing

	4 Related work
	5 Conclusion and Future Work
	References

