Branch-on-Random

Edward Lee

Craig Zilles

Department of Computer Science
University of lllinois at Urbana-Champaign

{eslee3,zilles}@uiuc.edu

ABSTRACT

We propose a new instruction, branch-on-random, that is like
a standard conditional branch, except rather than specifying the
condition on which the branch should be taken, it specifies a fre-
quency at which the branch should be taken. We show that branch-
on-random is useful for reducing the overhead of program instru-
mentation, via sampling. Specifically, branch-on-random provides
an order-of-magnitude reduction in execution time overhead com-
pared to previously proposed software-only frameworks for instru-
mentation sampling.

Furthermore, we demonstrate that branch-on-random can be
cleanly architected and implemented simply and efficiently. For
simple processors, we estimate that branch-on-random can be im-
plemented with 20 bits of state and less than 100 gates; for aggres-
sive superscalars, this grows to less than 100 bits of state and at
most a few hundred gates.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: Gen-

eral — Hardware/Software Interfaces
General Terms: Performance, Measurement

Keywords: Profiling, Instrumentation, Sampling, Branch, Pseudo-random, LFSR

1. INTRODUCTION

If we could profile our applications for free, it would facilitate
tools that could provide us better understanding of the software
systems we build, plus expedite building systems that monitor their
own health and optimize themselves based on their behavior. In
current machines, however, the overhead of profiling some behav-
iors introduces significant overhead, which can be prohibitively ex-
pensive in the performance critical portions of code.

An effective technique for reducing the cost of collecting infor-
mation that is applicable to many contexts is sampling: collecting
information about a subset of events and using that sample to ex-
trapolate the behavior of the whole. In the context of computers,
sampling allows trading off accuracy for a reduction of execution
time overhead, as fewer data items are collected and recorded.

Computer systems have long provided hardware support for
sampling via timer interrupts and performance counters. These

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CGO’08, April 5-10, 2008, Boston, Massachusetts, USA.

Copyright 2008 ACM 978-1-59593-978-4/08/04 ...$5.00.

sampling mechanisms have been used to build effective tools for
low-level performance analysis like DCPI [2] and VTune [18]. But,
when trying to analyze high-level behaviors in complex systems,
these hardware samples are insufficient [15]. This problem occurs
because at different program locations we are concerned with col-
lecting different information. For example, in Google’s production
search engine, they collect stack traces when lock contention oc-
curs and record the size of an allocated object at a heap allocation
site [10]. While it would be possible to record a map from program
location to the type of information to collect, this generally is not
done.

Instead, the most commonly used approach to collect high-level
information is to instrument the code with additional code to col-
lect the desired information. Instrumentation is powerful because
one has the full flexibility of the computer to collect, filter, en-
code, and store architecturally-visible! information. Instrumen-
tation does however add additional instructions to the execution,
which leads to execution time overhead when they are executed. In
some cases, this instrumentation overhead can be substantial, re-
sulting in slowdowns as large as a factor of ten [8].

In many cases, however, sampling can also be applied to re-
duce the overhead of instrumentation. Two main approaches have
been investigated: dynamic instrumentation and counter-based
sampling. Dynamic instrumentation [17, 23, 30] achieves low-
overhead sampling by dynamically inserting and removing the in-
strumentation from a running application. This can be an ex-
tremely effective technique, but requires significant support from
a run-time system to modify executing programs as they execute.
Counter-based sampling is an alternative approach where a (soft-
ware) counter is decremented at every instrumentation site and only
if the counter underflows is the instrumentation executed and the
counter reset. While this technique is simple to implement, it re-
sults in a non-trivial amount of execution overhead (to decrement
the counter) even when samples are not collected. We discuss
counter-based sampling and its associated overheads in more de-
tail in Section 2.

To almost completely eliminate the overhead of a counter-based
sampling framework for instrumentation, we propose branch-on-
random, a new instruction that is simple, useful, and efficient.
Branch-on-random is much like a conditional branch instruction,
except that rather than specifying a condition for the branch, the
instruction encodes the frequency at which it should be taken.
A single branch-on-random instruction can be substituted for the
entire counter-based sampling framework at each instrumentation
site, providing an approach for instrumentation that is both simple

Unstrumentation may have little or no visibility into the microarchitectural behavior of
the code (e.g., branch mispredictions, cache misses). Instrumentation and performance
counters complement each other with neither subsuming the other.

and efficient. In fact, the sampling framework overhead is suffi-
ciently small that programmers can exhaustively instrument their
code with negligible impact on performance.

The combination of branch-on-random for profiling high-
level program behavior and performance counters for profiling
instruction-level behavior provides a complete, inexpensive profil-
ing solution. Together these approaches open new opportunities
for continuous profiling, so that even the most performance critical
portions of the code in production environments can be profiled at
all levels. For example, most Java Virtual Machines (JVMs) only
collect profile information before the first optimized code is gener-
ated. By not profiling the optimized code, JVMSs miss opportunities
to re-optimize their code as program behavior changes [29]. Fur-
thermore, continuous profiling mitigates the downside of aggres-
sive speculative optimizations; we can accurately track the ratio of
correct to incorrect speculations and use that to guide recompila-
tion [34].

The focus of this paper is to demonstrate the utility, ease of im-
plementation, and performance potential of branch-on-random. We
do so by evaluating branch-on-random in the context of a JVM, an
example of a software system that adaptively optimizes its execu-
tion by aggressively profiling its behavior using instrumentation.
Specifically, we make the following contributions:

1. We describe an architecture and implementation for
branch-on-random that is clean and straight-forward to
implement with minimal hardware complexity. Branch-
on-random can be architected without adding architecturally
visible state, the implementation requires a 16-bit register
and a few dozen gates, and the branch condition can be com-
pletely evaluated in the front-end of the pipeline leading to a
short misprediction penalty. We describe the high-level us-
age then discuss implementation details in Section 3.

2. We demonstrate that using branch-on-random in a com-
piler is simpler than counter-based frameworks and
provides equivalent accuracy for a given sampling fre-
quency. When comparing the accuracy of the profile infor-
mation collected by branch-on-random-based and counter-
based sampling frameworks, we find the techniques are ei-
ther equivalent, or branch-on-random out-performs a simple
counter-based scheme, because its pseudo-randomness nat-
urally avoids systematic correlations between when samples
are collected and the code being executed. We describe our
experimental method and present the accuracy results in Sec-
tion 4.

3. We demonstrate that branch-on-random provides an
order-of-magnitude reduction in overhead with respect to
counter-based frameworks. Using a detailed timing simu-
lator, we evaluate the instrumentation overhead in DaCapo
benchmarks executed on the Jikes RVM and a simple micro-
benchmark. We find that branch-on-random reduces the cost
of each instrumentation site, and, therefore, its benefit is mul-
tiplicative with software techniques like Arnold and Ryder’s
“Full-Duplication” [3]. Our experimental method and results
are presented in Section 5.

We conclude the paper through a discussion of related work not
covered elsewhere in the paper (Section 6) and by envisioning ad-
ditional applications for the branch-on-random instruction (Sec-
tion 7).

@ if (count == 0)
@

do_profile()
@ count = reset
@ count-—-

Figure 1. Counter-based sampling. Instead of executing the profile code
every time, a counter can be used to decide if a sample should be taken; i.e.,
the count variable reaches 0 after counting down from reset.

@ variable cost
© fixed cost

@
(1] |

100% 0%
sampling rate

exec. overhead

Figure 2. Components of sampling overhead. The total execution overhead
from sampling is a combination of fixed and variable costs. The fixed cost
comes from the instructions that need to be unconditionally executed while
variable costs can be decreased by reducing the sampling rate.

2. BACKGROUND: INSTRUMENTATION
SAMPLING AND ITS OVERHEAD

As discussed in the previous section, sampling can be an effec-
tive technique for reducing the overhead of collecting profile infor-
mation. While sampling is only viable for information that can be
incomplete, it has been shown to be effective for collecting many
kinds of profiles [2, 7, 8, 11, 13, 16]. While some loss of accuracy
is likely to occur, for most applications of profiling we are con-
cerned with aggregate behaviors and this loss of precision is tol-
erable. In particular, many performance-oriented applications are
primarily concerned about the frequently-executed portions of the
code (for which we will have many samples) and those behaviors
that are highly-biased (whose samples will have a low variance), for
which sampling allows us to accurately characterize those program
behaviors that we can potentially exploit [5].

Sampling permits a reduction in overhead because it prevents the
instrumentation code from being executed every time the instru-
mentation site is executed. In fact, we can directly control the over-
head from the instrumentation by setting the sampling rate, the av-
erage fraction of instrumentation sites encountered at which a sam-
ple is collected. One technique to implement sampling is counter-
based sampling (shown in Figure 1), where a variable counter
starts at a positive value and counts down until it reaches zero, at
which point, it is reset. In such an implementation, the sampling
rate is controlled by adjusting the value of reset for the code.

As shown in Figure 2, we would expect that the overhead of the
instrumentation itself (a variable cost) would vary directly with the
sampling rate (e.g., a factor of two increase in sampling rate would
result in a factor of two reduction in instrumentation overhead) and
this is borne out in our results and the results of previous work [3].
The sampling framework, however, introduces its own overheads,
some of which are independent of sampling frequency. As a result,
even when the sampling rate is reduced to zero, the overhead does
not disappear. For a given set of instrumentation sites, the sampling
framework will introduce a fixed, minimum overhead and previous
work has shown that the overhead can be substantial (5-55%) [3].

The lower bound of overhead is purely an artifact of the sampling
technique that was introduced to reduce the overhead of profiling.
In the case of counter-based sampling, every time the sampling site
is reached, it needs to access a counter value and check if it should
branch; afterwards, the counter needs to be decremented. In ad-

dition to this fixed cost, which can be significant, counter-based
sampling contributes to the variable costs by loading a reset value
into the counter whenever a sample is taken.

Specifically, a software counter-based framework leads to the
following architectural and microarchitectural sources of overhead:

1. Increased code size for sampling yields additional instruc-
tions fetched and increases the program’s instruction work-
ing set, which can cause extra instruction-cache misses.

2. Extra instructions consume execution resources. In out-of-
order processors, they must be buffered in the re-order buffer,
which reduces the number of non-instrumentation instruc-
tions that can be in flight.

3. Most instructions act on registers, so additional register us-
age breaks up existing register live ranges. In out-of-order
machines, the additional physical register requirements can
stall the front-end if there are no extra rename registers avail-
able.

4. The sampling counter needs to either be stored in memory
(requiring additional loads and stores) or in a register (pre-
venting the use of that register anywhere in the instrumented
code, a large cost in an instruction set architecture (ISA) with
few registers).

5. Sampling requires conditional branching and at high sam-
pling rates branch mispredictions cannot be avoided. This
results in expensive penalties of flushing many instructions
when the branch is resolved in the back end of the pipeline.

6. These sampling branches will also pollute branch prediction
structures. Since the sampling branches are uncorrelated to
the program’s other conditional branches, there results both
an effective reduction in the global history length, as well
as a potential pollution of the global history when samples
are taken. In addition, if sample branches and other program
branches alias in the counter array, destructive interference
can occur.

In the next section, we propose branch-on-random, which en-
ables sampling of instrumentation with much lower overhead. We
will show that it eliminates many of the sources of overhead while
retaining accuracy and flexibility, making it a compelling replace-
ment for existing counter-based frameworks.

3. BRANCH-ON-RANDOM DESIGN

In this section, we describe how to architect and efficiently
implement branch-on-random for use in low-overhead sampling.
First, we demonstrate how software will use branch-on-random to
implement sampling. Next, we present a candidate architecture and
encoding for it. Finally, we describe one way to implement branch-
on-random as part of the microarchitecture and discuss its perfor-
mance relative to software counter-based sampling approaches.

3.1 Software Usage

A branch-on-random is a conditional branch. Programs can use
it like any other conditional branch to jump over sections of code.
The major difference is that rather than specifying the condition un-
der which the branch will be taken, it specifies the frequency with
which it should be taken. The program will not know which partic-
ular branch instances will actually be taken, because the implemen-
tation will pseudo-randomly pick them in a way that the specified
frequency will be asymptotically achieved.

@ if_random (1%)
@) do_profile()

Figure 3. Using branch-on-random. A branch-on-random is used like other
conditional branches except that its condition is a frequency of how often it
should be taken.

load rCount, (mCount)
br= rCount, 0, uncomm brr 1%, uncomm
common: sub rCount, 1 ’

stor rCount, (mCount) ‘:'> common: .-
uncomm: # collect profile..

uncomm: # collect profile.. oto common
load rCount, (mReset) g
goto common

Figure 4. Usage of branch-on-random. Multiple lines of existing sampling
code can be rewritten to use just a single branch-on-random, brr, while retain-
ing the desired functionality. The bold text highlights the differences, and the
shaded region is the additional code that always executes.

An example usage would be to randomly branch to profiling code
as shown in the pseudo-code in Figure 3. By controlling how of-
ten this branch is taken, the program amortizes the cost of execut-
ing the additional, possibly expensive, profiling code. A cursory
comparison to the counter-based sampling code in Figure 1 reveals
that branch-on-random has simpler code with fewer lines of code
contributing to the fixed (shaded) and variable (unshaded) costs.
This discrepancy is even more obvious at the assembly level (Fig-
ure 4), where the sampling framework can be implemented with a
single branch-on-random compared to many instructions for soft-
ware counter-based sampling.

3.2 Encoding and Semantics

In managing the trade-off between accuracy and overhead, it is
useful to be able to select from a wide range of frequencies; but,
in general, the ability to exactly specify an arbitrary frequency is
not necessary. Thus, we encode the branch frequency value, freq,
in just 4 bits for 16 possible values. The mapping of bit values to
frequencies is given by (%)f reatl This provides a wide range of
frequencies from 50% ((3)") to .0015% (($)"°). As we will show,
powers of 2 are simple to implement in hardware. Adding 1 to
the encoded value, freq, avoids re-encoding unconditional jumps
(branching 100% ((%)0) of the time).

The instruction format for branch-on-random ends up looking
just like other conditional branches except now the condition is an
encoded taken-frequency, which means individual instructions can
have different frequencies. A sample instruction format is provided
in Figure 5.

We intentionally do not architect that branch-on-random instruc-
tions will be taken in any particular sequence, just that asymptot-
ically the branch bias will approach the specified frequency. In
doing so, we both permit flexibility of implementation, as well as
prevent exposing any architecturally visible state that would need to
be checkpointed during speculative execution or context switched
to ensure a specific pattern.

| opcode | freq | target

A
4 bits

Figure 5. Branch-on-random instruction format. Instead of encoding an
explicit condition for the branch, a branch-on-random specifies a frequency (a
4-bit field in our implementation), which is converted to the probability that the
branch should be taken using the formula: (1)/me7+1.

0001 # 1
1000 # 2
0100 # 3
0010 # 4
1001 # 5
1100 # 6
0110 # 7
1011 # 8
0101 # 9
1010 #10

—D , Q 1101 #11
1 1110 #12
»C 1111 #13

0111 #14
0011 #15
0001 # 1

Figure 6. Updating an LFSR. A 4-bit LFSR with the right two bits selected for
XOR will update from the value 0110 to 1011. All bits are shifted right on an
update except the left-most bit which gets the result of the xOR. A 4-bit LFSR
cycles through 15 possible values except 0.

D Q D Q D Q D Q
» C 1 > C O - C 1 > C 1
> >
g]
'
6.25% H 50%
v

frequency
(from decode)
Iak‘en (to decode)

Figure 7. Generating probabilities from an LFSR. By treating each bit in the
LFSR as a random value, ANDing various numbers of bits resulting in a value
of 1 represents a taken branch for the corresponding frequency. A mux can
be used to select the desired frequency of the branch. Only a subset of AND
gates are shown to avoid a clutter of wires and gates.

3.3 Implementation

In this section, we describe a microarchitecturally simple imple-
mentation of branch-on-random. We discuss the additional hard-
ware that is needed for the randomness, the desirable properties of
branch-on-random that allow it to be fast, and the expected perfor-
mance of this implementation.

Achieving Randomness: Our proposed implementation of branch-
on-random uses a simple hardware pseudo-random number gener-
ator called a linear feedback shift register (LFSR) [14]. Each bit of
the LFSR, implemented as a D-type flip-flop as part of a shift reg-
ister, shifts to the next position on an update except for the first bit,
which is computed by XORing a set of bits from the LFSR. Choos-
ing the correct bits to XOR allows an n-bit LFSR to cycle through
all 2" values except 0. For the purpose of illustration, an exam-
ple update of and sequence generated by a 4-bit LFSR is shown
in Figure 6; to support frequencies of (%)16, the LFSR’s used by
branch-on-random will need to be at least 16 bits.

As an LFSR cycles through all possible values, individual bits
can be treated as a random value of either O or 1, each with a prob-
ability of almost 50%.> This random bit is the component needed
to generate the wide range of branch-on-random frequencies.

The first frequency required of the branch-on-random is 50%,
and we have already explained that sourcing a single bit in the
LFSR provides exactly that. If we treat each bit, which has a 50%
probability of being 1, as an independent probability, the likelihood
of two arbitrary bits from the LFSR both set to 1 is 50% * 50% or
25%. In other words, to get a value that is set to 1 approximately
25% of the time, we can AND any two bits from the LFSR. In gen-
eral, the probability of z bits being all set to 1 is (5)*. With 15

2An LFSR cannot be all 0s, so an n-bit LFSR actually goes through 2™ — 1 values,
with each bit set to 1 for 2"~ of the values. Thus, the likelihood for any bit to be 1

is (22(2% With n=16, the probability is 0.5000076, which is close enough to % for

most practical purposes.

AND gates we can compute all 16 supported frequencies in parallel,
using the instruction’s freq field to select the appropriate one to
compute the branch outcome.

Since the random bits are not independent, some care needs to be
taken in selective the bits to AND to provide some degree of inde-
pendence between consecutive branch-on-random outcomes. For
example, while ANDing two adjacent LFSR bits will correctly re-
sult in the branch being taken 25% of the time, the conditional prob-
ability of taking the branch given that the previous (25% frequency)
branch was taken is 50%, because the one of bits is guaranteed to
be one. While such a lack of independence between samples has
not, in a statistically significant manner, impacted the quality of in-
formation we have been able to collect for the profiling applications
we have tried (data not shown), we believe it to be an undesirable
property that potentially impacts other applications. Furthermore,
it can be mitigated in a straight-forward and inexpensive manner,
by ANDing non-contiguous bits with varied spacing (e.g., select-
ing bits 0, 2, 5, and 9 to compute a 6.25% probability). Providing
some spacing even when many bits are ANDed (for very low prob-
abilities) requires extending the LFSR beyond 16 bits. Given that
applications requiring very low sampling rates ((%)16) are likely
rare, a 20-bit LFSR may be a reasonable design point.

Pipeline Integration: In discussing the branch-on-random’s im-
plementation in the pipeline, it is useful to consider how condi-
tional and unconditional branches are implemented. Conditional
branches are taken based on value (either registers or condition
codes) set by previous instructions, so they necessarily need to
be resolved in the back-end of the pipeline. Unconditional direct
branches do not depend on other instructions; and because of that,
they can be resolved much earlier in a pipeline, specifically at de-
code time. While a branch-on-random has multiple potential tar-
gets (like a conditional branch), it is like an unconditional branch
in that it does not depend on other instructions. As a result, it is pos-
sible to resolve them early—as soon as they are decoded. Resolv-
ing branch-on-random in decode reduces the misprediction penalty
when the branch is taken.

We propose that branch-on-random be evaluated using the same
datapath for handling unconditional branches. In parallel with com-
puting the branch target, the branch-on-random condition must be
evaluated. As noted above, the branch outcome is computed by
ANDing a number of bits from the LFSR as shown in Figure 7.
This ANDing can be performed in parallel with extracting the fre-
quency field from a branch-on-random. The frequency field drives
a 16-input mux that selects the appropriate AND gate output to
determine whether the branch should be taken or not. We believe
that these circuit paths will be sufficiently short that the branch out-
come can be computed before the branch target has been computed,
meaning that the branch-on-random hardware will not extend the
cycle time of the decode stage. If necessary, the circuit can be
pipelined such that the outputs of the AND gates are computed in
the previous cycle and latched. To minimize the power consump-
tion, the LFSR is only clocked on cycles in which it is used.

When implementing branch-on-random in a superscalar ma-
chine, the simplest solution is to replicate the hardware at each
instruction decoder. As each branch is logically independent, it
is architecturally valid to use multiple, completely decoupled LF-
SRs. Furthermore, given the small amount of hardware necessary
to implement branch-on-random, this is not entirely unreasonable.’

3'Given that it is unlikely that multiple branch-on-random instructions will be in the
same fetch packet, we can also design the machine such that multiple decoders can
arbitrate (using a priority encoder based on program order) for a single LFSR. If more
branch-on-randoms are present in a fetch packet than LFSRs, the fetch packet will
have to be split, with the additional branch-on-randoms decoded the following cycle.

Prediction and Expected Performance: Branch prediction is,
in general, not effective for predicting the outcome of branch-on-
random instructions, because the sequence is sufficiently long that
it appears truly random to a history-based predictor. As a result,
our goal is to avoid mispredictions for the not-taken case and mini-
mize the penalty for the taken case. We accomplish this by forcing
these branches to always be predicted not-taken, by never entering
them into the branch prediction hardware (e.g., branch predictor
table, branch target buffer (BTB), path history table). A benefi-
cial side effect of this is that these structures are then not polluted
by sampling branches, avoiding aliasing and conflicts in tables and
wasting entries in the branch history.* Because branch-on-random
will generally be used with low sampling rates (e.g., less than 10%
and often below 1%), the short misprediction penalty (discussed
below) generally does not significantly impact performance.

By forcing the branch to be predicted as not-taken, a branch-on-
random that is resolved to be not taken (in decode) need perform
no further action and, hence, can be committed at decode time. It
is safe to commit this instruction early, as it has no side-effects; it
does not change the data state of architecturally-visible registers or
memory. Even though speculative execution can result in unnec-
essary LFSR updates when resolving a branch-on-random on the
wrong path, it is not necessary to checkpoint the LFSR state. Un-
like a counter, losing LFSR transitions does not impact the proba-
bilities it generates. This hardware simplification is enabled by not
architecting a particular sequence of branch outcomes.

When a branch-on-random is taken, fetch has to be re-directed
to the branch target, resulting in a small performance overhead.
When a branch is taken, the wrong path instructions fetched be-
tween when the branch was fetched and when it is resolved need
to be flushed. By resolving the branch in the decode stage, this
“front-end misprediction” will generally have significantly less im-
pact than the “back-end misprediction” associated with standard
conditional and indirect branches. Notably, these short mispredic-
tions are detected before register renaming, so there is no need for
recovering register rename state.

Looking back at the sources of overhead of software counter-
based sampling presented in Section 2, many of them (items 2
through 4 and 6) have been eliminated with a branch-on-random-
based implementation, and those that remain have been reduced.
The first source of overhead is reduced, as branch-on-random sam-
pling framework consists of a single instruction. The second, third,
and fourth are eliminated, as this instruction is completed at de-
code and uses no (architecturally visible) registers or memory. The
fifth source of overhead is reduced because, when a sample is to
be collected, only the penalty of a front-end misprediction is paid,
not a full pipeline squash. Finally, the sixth source of overhead is
eliminated, as branch-on-random does not pollute the predictors.

Summary: Implementing branch-on-random requires: 1) extend-
ing the existing decoder to recognize the new instruction, 2) using
the existing branch target computation datapath to compute its tar-
get, 3) adding an LFSR that is clocked at the end of a cycle when a
branch-on-random is decoded, 4) 15 AND gates, one of each size
from 2 to 16 inputs, 5) a 16-input multiplexer controlled directly
from a field in the instruction, 6) overloading the existing front-
end misprediction path used for unconditional branches, and 7)
adding control logic to prevent inserting a BTB entry on a branch-
on-random misprediction. Thus, for a single-issue machine, we
estimate branch-on-random can be implemented with roughly 20
bits of state (for the LFSR) and less than 100 gates. For a super-

4For infrequently-executed unconditional jumps, such as those in Figure 4, branch-on-
random could encode a 100%-taken frequency that avoids interfering with the BTB.

scalar machine where all decoders support unconditional branches,
this logic scales linearly with the decode width; for a 4-wide su-
perscalar, branch-on-random should contribute less than 100 bits
of state and less than 400 gates. Given that branch-on-random pro-
vides the opportunity to add profiling code to any executable with
almost no overhead, we believe that this small amount of hardware
is justifiable in future microprocessors.

3.4 Deterministic Implementations

During actual program execution, it is generally not important
that branch-on-randoms follow any proscribed sequence; the non-
deterministic implementation described above exploits this free-
dom to simplify the hardware. For testing purposes, however, it
can be beneficial to have deterministic behavior, even for branch-
on-random. In particular, hardware vendors have found that build-
ing completely observable, deterministic processor implementa-
tions enable them to greatly accelerate the process of post-silicon
validation [28]. In this section, we describe the minor additions
required for a deterministic implementation of branch-on-random.

The main source of non-determinism for branch-on-random de-
rives from the fact that the LFSR is speculatively updated (in the de-
code stage), which cause LFSR transitions to be lost when branch-
on-random instructions are squashed due to branch mispredictions
or exceptions. This can be avoided by “checkpointing” the LESR
and restoring it after a squash. Because the LFSR updates are shifts,
we can recover its previous state by simply allocating additional
storage for the bits that would have shifted off the end of the LFSR
(one additional bit per speculative branch-on-random allowed) and
shifting back. Obviously the system must track how many bits to
shift back and this can be performed either by maintaining a counter
of number of branch-on-randoms that have been decoded — this
counter needs precision only to the number of branch-on-randoms
that can be in flight — that is checkpointed with other rename state
that gets checkpointed; alternatively, where a “reverse-execution”
technique is used to recover rename tables (e.g., for exceptions in
the MIPS R10000 [32]), we can shift back once each time a branch-
on-random is removed from the ROB.

For the purposes of hardware testing it is not necessary to expose
the LFSR in the architecture. The LFSR can be hooked up to an
existing scan chain present for enabling chip testers to read/write
the contents of all of a processor’s registers; the only cost would be
extending the scan chain.

Determinism can facilitate software debugging as well, but there
are a number of existing challenges facing deterministic applica-
tion execution, at least in the context of multithreaded applications.
Nevertheless, deterministic branch-on-random behavior for appli-
cations has different requirements than for hardware debugging; in
particular, the LFSR state must be readable and writable by soft-
ware, so that it can be initialized by the application to a known
value and saved/restored on context switches. While this does have
some additional cost, if the LFSR can be read efficiently by appli-
cation software it can be used as a very fast pseudo-random number
generator by randomized algorithms [25].

Alternatively, if full-speed execution is not required during soft-
ware testing, a fully-deterministic branch-on-random can be emu-
lated in software, irrespective of whether the hardware implemen-
tation is deterministic or not. One approach would be to substi-
tute an invalid opcode when compiling branch-on-random instruc-
tions during testing.> Then a signal handler for invalid opcodes
could be registered that would emulate the branch-on-random in
software, using LFSR state stored in thread-local storage. Alterna-

5This approach is actually how we collect the accuracy results presented in Section 4
on real machines.

tively, if re-compiling was thought to be too tedious, a mode could
be provided (as part of processor state) that would treat branch-
on-random instructions as invalid opcodes (invoking an exception
handler, as above).

4. ACCURACY

In this section, we validate that the branch-on-random’s behavior
is suitable for instrumentation sampling. We consider the branch-
on-random’s sampling suitable if it achieves accuracy similar to
or better than software counter-based sampling. In particular, we
demonstrate that no idiosyncrasies of the LFSR’s behavior pre-
vent it from being suitable for use in sampling program behaviors.
We modify Jikes RVM [1], a Java-in-Java virtual machine, to emit
branch-on-random instructions and functionally execute them. We
measure accuracy by comparing a method invocation profile col-
lected via each sampling method with a full profile.

The results from the functional accuracy tests for branch-on-
random provide three interesting results. The first shows that us-
ing an LFSR-based branch-on-random provides similar accuracy
compared to existing counter-based sampling that samples exactly
at every fixed interval. The second is that the LESR’s pattern nat-
urally avoids the problem of falling into a pattern with the code.
Finally, the process of modifying Jikes for these tests was straight-
forward, reflecting the simplicity of using the branch-on-random
ISA extension.

4.1 Experimental Method

The Arnold-Ryder framework is a compile-time transformation
that takes Java code previously instrumented by an earlier com-
piler phase and converts the instrumentation into profile sampling.
It does this by adding a decrementing global counter that then
branches to instrumentation code when the counter reaches zero,
at which point the counter is reset to the sampling interval. An
example of this was shown earlier in Figure 1.

It was straightforward to extend the Arnold-Ryder framework
(already implemented in Jikes) to use branch-on-random sampling.
To sample the instrumentation, instead of adding a counter load,
check, reset, and decrement as well as allocating memory for the
counter and reset value, it only needs to add a single branch-on-
random instruction. The only difficulty in using branch-on-random,
is that it required us to change the code layout for the instrumenta-
tion. As implemented in Jikes, the Arnold-Ryder framework places
the instrumentation code in line and jumps over it when samples
are not taken. In contrast, usage of branch-on-random necessi-
tates that the instrumentation code is place out of line, because
a low overhead implementation of branch-on-random necessitates
that the common case branch outcome be fall through. Thus, we
modified Jikes’s Arnold-Ryder framework to place the instrumen-
tation code at the end of the method. After executing the profiling
code, the code unconditionally jumps back to the normal code or-
der. We illustrate this change with a sample control-flow graph in
Figure 8.

To evaluate the quality of the profile information collected via
sampling, it is necessary to run the benchmarks sufficiently long
that enough profile information is collected to make a reasonable
comparison between methods. As a result, we wanted to run the
DaCapo benchmarks (2006-10-MR?2) [4] to completion using their
“default” data set size. To achieve these long simulation runs using
an instruction that our machines do not natively support, we ran
the benchmarks on real machines, functionally emulating branch-
on-random using signal handlers. For these experiments, we had
Jikes emit an invalid opcode for the branch-on-random followed
by 4 bytes for a branch offset. We registered a signal handler for

common
branch

uncommon

: branch

Figure 8. Rearranging code blocks. Instead of branching over the instru-
mentation code (taking the thick line) in the common case, we flip the condi-
tion, so fetching in order will only incur misprediction stalls and unconditionally
jump back in the uncommon case.

unconditional
jump

SIGILL, the illegal instruction exception, in the C program that
Jikes uses to boot the rest of the virtual machine (written in Java).
When our invalid opcode is encountered, the O/S calls our signal
handler which functionally emulates a branch-on-random by sim-
ulating an LFSR in software; based on the LFSR state, the signal
handler either updates the PC to the fall-through instruction or adds
the branch offset to the PC to redirect control flow to the branch tar-
get. This implementation runs at near full speed on a real machine
and is transparent to the JVM above.

We ran the DaCapo benchmarks on Jikes to collect a profile of
method invocations for accuracy comparisons between branch-on-
random sampling and counter-based sampling. To compare accu-
racy of each sampling technique, we calculate the overlap percent-
age [3] by first collecting the full profile of method invocations and
recording the relative method percentages. We repeat the same pro-
cess with each sampling method. To compute the accuracy, we use
the following expression:

accuracy = Ziv:1 min(fru(2), fsampiea(?))

where frui(i) and fsampiea(?) are the fraction of all of the col-
lected samples that were for method ¢ in the full and sampled pro-
files, respectively. For example, if methodl is accounts for 50%
of the method calls in the full profile while sampling reports it ac-
counts for 60%, the method contributes 50% to the profile’s accu-
racy. Because the sampling overcounted method1, other method
percentages must be under-counted. A perfect sampling would re-
sult in an accuracy of 100%.

To compare the differences between deterministic sampling and
random sampling, we also implemented the branch-on-random
to be taken at defined intervals; for example, take every 1024th
branch. This is essentially a hardware counter triggered by the
branch-on-random instruction, so we will refer to it as a hardware
counter in the results.

4.2 Results

In this section, we show that branch-on-random is accurate. We
first compare it to both hardware and software counters of the same
sampling frequencies and result in comparable and sometimes bet-
ter accuracy. We then test various configurations of branch-on-
random implemented with LFSRs to look at the sensitivity of
changing various properties of the LFSR.

Because the accuracy of sampling is directly tied to the number
of items being sampled, we sort the DaCapo benchmarks based
on their total number of method invocations at size “default.” The
following is the order of benchmarks with the invocation counts in
millions: fop (7), antlr (17), bloat (93), lusearch (108),
xalan (109), jython (170), pmd (195), luindex (212).°

6We do not include results for chart, eclipse, and hsgldb, as these benchmarks
would not run on Jikes for our machines (with or without the sampling framework),
resulting from failure to access dependencies in the classpath or out-of-memory errors.

= hw count m random

bloat lusearch xalan jython pmd luindex average

= sw count

fop antlr

percent accuracy
©
o
|

Figure 9. Sampling accuracy at 2'°. Random sampling of method invo-
cations has comparable accuracy to those with software or hardware coun-
ters. The randomness avoids matching the program behavior in jython where
counter accuracy suffers.

= sw count = hw count

= random

ililil=ililn
|||||||||||||||
Iihilihililali s

fop antlr bloat lusearch xalan jython pmd luindex average

percent accuracy
©
o
il

Figure 10. Sampling accuracy at 2'3. Decreasing the number of samples
by a factor of 8 results in similar accuracy trends as those in Figure 9 except
that everything is lower. Branch-on-random accuracy shows its resonance-
avoiding ability in jython and pmd.

Frequency analysis

We first show the accuracies of the branch-on-random with a fre-
quency of (%)10 and counter-based samplings with an interval of
1024 (2'°) in Figure 9. Overall, we find the profile quality achieved
by all of the techniques to be pretty similar. The universally lower
accuracies of fop and antlr are the result of a small number
of samples being collected for these benchmarks by all three ap-
proaches.

Jython is a noticeable outlier, where branch-on-random’s ac-
curacy is almost 7% higher than the two counter methods. In this
benchmark, the counter-based methods resonate with the test pro-
gram. For example, a loop body containing calls to two leaf meth-
ods will result in only one of the two methods getting sampled for
a counter-based sampling interval that is a multiple of two.” The
pseudo-randomness of branch-on-random, however, automatically
varies the intervals between samples. While software techniques
have been employed to avoid this problem [2] in counter-based
sampling, branch-on-random inherently eliminates this problem, so
users do not even need to think about it in the first place.

We find a similar set of results (shown in Figure 10) when re-
ducing the sampling rate to 1 per 8192 (2'3). Once again, jython
performs poorly with the counters, but now it is easier to see that
pmd also shows some of this pathological behavior.

Sensitivity analysis

We performed sensitivity analyses with respect to two aspects of
the LFSR design: (1) the selection of bits to XOR for generating
the sequence of pseudo-random numbers and (2) the selection of
bits to AND for computing each probability (as discussed in Sec-
tion 3.3). For this profiling application, we found the branch-on-
random-based sampling framework to be robust to both the par-
ticular LESR sequence generated and to which bits of the LFSR
register are sampled, allowing the LFSR implementation to be se-

7For example, for an interval of 2, if the first method is sampled, the second method
will not sample and instead decrement the counter; however, now the counter indicates
that the next method will be sampled, which happens to be the first method again.
In general, this affects any fixed interval that is a multiple of a recurring pattern of
sampling sites such as chains of nested method calls in a loop or sequences of method
calls.

lected for implementation ease. In particular, the variation that we
observed in each of these experiments was not statistically signifi-
cant relative to the distribution of results achieved from initializing
the LFSR with different values. Having already discussed the latter
result, we briefly relate the former.

For a particular length LFSR, there can be many sequences of
pseudo-random numbers that cycle through all the possible values.
The produced sequence depends on which bits of the LFSR are
chosen to be XORed to compute the input to the LFSR (bit 0). We
compared the profile information for four configurations of a 32-
bit LFSR—two with four “taps” at bits (32, 31, 30, 10) and (32, 19,
18, 13), and two with six “taps” at bits (32, 31, 30, 29, 28, 22) and
(32, 22, 16, 15, 12, 11)—and found variation in the profile quality
below the level of significance.

S. OVERHEAD

In this section, we compare the overhead of a branch-on-random-
based sampling framework to a counter-based one using timing
simulation. We use DaCapo benchmarks running on Jikes RVM
to explore these overheads in real applications and a microbench-
mark to perform detailed analysis of branch-on-random’s perfor-
mance characteristics. We find that branch-on-random can achieve
an order-of-magnitude reduction in overhead from software-only
frameworks, with the overhead of each instrumentation site as-
symptotically approaching .1 cycle (on a 4-wide out-of-order ma-
chine) as the sampling rate is decreased.

5.1 Experimental Method

To support the JVM-based workloads in timing simulation, we
have developed an x86-based timing simulation integrated into the
Simics full-system simulator. This simulator uses the timing-first
approach [22], where the timing simulator runs ahead and uses a
“golden” functional model (Simics [31]) to verify the results pro-
duced by instructions as they commit. This approach to simula-
tion permits full-system simulation without having to build a 100%
functionally-correct timing simulator, while preserving the ability
to perform arbitrary speculative execution. The functional model
included in our timing simulator is derived from PTLsim [33], us-
ing PTLsim’s decomposition of x86 instructions into micro-ops.

We configured our simulator to be a 4-wide (decode, execute,
retire) out-of-order processor with a 80-entry reorder-buffer. The
front end can fetch up to three x86 instruction per cycle, but stops
fetch at a predicted taken branch. Its branch predictor is a tourna-
ment predictor with a 16-bit gshare and a 64k-entry bimodal predic-
tor, and it includes a 32-entry RAS and a 1024-entry branch target
buffer (BTB). The minimum (back-end) misprediction penalty is
11 cycles. The L1 caches are 32KB, 4-way set-associative with 64-
byte blocks. The shared L2 cache is IMB, 8-way set-associative
and responds in 8 cycles, and memory responds in 140 cycles.

We extended our simulator to support branch-on-random by
overloading the Simics magic instruction. Jikes’s code generator
emits a branch-on-random as a magic instruction followed by a
4-byte branch offset. Our Simics extension module supports this
instruction both in pure-functional simulation mode (so that we
can fast forward our workloads to the point we want to sample)
and in the timing simulator. In timing simulation mode, the timing
simulator (as the leading simulator) is responsible for functionally
simulating the branch-on-random and communicating its computed
outcome to Simics so that both simulators compute the same out-
come. Branch-on-random instructions are resolved in the decode
stage, the Sth stage of the pipeline.

As we need to compare different versions of the same code (a
baseline version with no instrumentation and versions with branch-

Instrumented Code

No-Duplication Full-Duplication

O sampling check

Figure 11. Two transformations provided by the Arnold-Ryder framework.
No-Duplication adds a sampling site (the circle) before each shaded instru-
mentation block. Full-Duplication duplicates the code with backedges
pointing to the original, removes the instrumentation from the original, and
adds a check at every method entry and loop back-edge to determine which
version of code should be executed.

on-random and counter-based sampling frameworks), we need a
method for identifying an equivalent region of the execution for
simulation in each of these executables. To support this in our
Java-based workloads, we have implemented the ability in Jikes to
insert markers in specified methods [26]. Again, we use the Sim-
ics magic instruction (this time with a zero branch offset to distin-
guish it from a branch-on-random) for these markers. Our Simics
extension module keeps track of the number of these marker in-
structions executed, beginning warmup, beginning simulation, and
ending simulation at specified marker counts.

5.2 Application Results

Our goal in this evaluation is to understand the relative perfor-
mance of the branch-on-random framework relative to counter-
based sampling. As the overhead of the instrumentation code is
orthogonal to the framework overhead, we simply configured Jikes
to instrument method execution frequencies for these experiments,
a profiling technique that introduces a relatively small number of
instrumentation sites into the code. By using a sampling rate of one
sample per 1024 executions of an instrumentation site, we largely
eliminate the overhead of the instrumentation itself, exposing the
overhead of the sampling framework. In the next section, we con-
sider how the overhead changes with sampling rate.

To demonstrate that branch-on-random can improve per-
formance with respect to the best software sampling tech-
niques, we ran these experiments using Arnold-Ryder’s
Full-Duplication approach [3]. As shown in Figure 11,
Full-Duplication amortizes the cost of the sampling
framework across all of the instrumentation sites within a given
acyclic region of the program. Specifically, it replicates every
instrumented code region to produce one version that contains
instrumentation and one that does not, using counter-based
sampling to select the appropriate version on entry to the region.
To ease the measurement of the profiling overhead, we turn
Jikes’s adaptive optimization off, so that all code runs using the
baseline compiler with instrumentation for the full run. Since the
application code is less highly optimized, our measurements may
underestimate the absolute overhead, but the relative overheads
should be representative.

We find that across the benchmarks,® branch-on-random pro-
vides almost an order-of-magnitude reduction in the overhead of

8We were unable to get results for ant 1r and xalan due to the non-determinism
of the testing framework preventing us from reliably sampling the same portion of
execution in the different versions. Because the JVM is a multithreaded program (as
are most of the DaCapo benchmarks), variations in the instruction path lengths among
the benchmarks cause interrupts to be taken at different program points, leading to
different thread interleavings and different heap allocations (as garbage collection is
performed at different times). pmd would not run at all for us on Jikes/Simics.

— branch-on-random

alll

bloat fop luindex lusearch jython

= counter-based

M)
|

percent overhead
S

average

Figure 12. Overhead of two sampling frameworks for DaCapo
benchmarks running on Jikes. Software counter-based sampling (us-
ing Full-Duplication) averages almost a 5% overhead on these
weakly-optimized benchmarks, while the branch-on-random-based framework
achieves a 0.64% overhead. Performance is normalized to a non-instrumented
version of the code, and both experiments use a sampling period of 1024.

the sampling framework, on average (as shown in Figure 12). The
main contributors to the counter-based sampling frameworks over-
head not present in the branch-on-random are largely accounted for
by two factors: 1) the overhead of fetching and executing the addi-
tional instructions in the counter-based approach, and 2) additional
branch mispredictions resulting from the counter-based approach.
Interestingly, the branch mispredictions result from two sources:
1) sampling branches that are incorrectly predicted as taken due to
aliasing in the predictor, and 2) non-sampling branches whose pre-
diction accuracy is impacted by the effective reduction in branch
history due to the (low-entropy) sampling branches.

While useful for understanding branch-on-random’s behavior in
applications, the small non-determinisms present from simulat-
ing differently-compiled versions of this multi-threaded workload
make it difficult to use these applications to do detailed analysis of
the two frameworks. In the next section, we use a single-threaded
microbenchmark to cleanly isolate the overhead of branch-on-
random on a per-instrumentation site basis.

5.3 Microbenchmark Results

In an attempt to precisely measure the overhead of sampling
frameworks, we created a microbenchmark that computes check-
sums and character distributions of half a million characters stored
in memory. There are multiple execution paths in the character
processing loop that conditionally update the checksum for upper-
case, lower-case, and the other remaining characters. By adding
instrumentation, we can collect edge profiles to compute branch
biases.

To minimize the perturbations on the generated code, we
compile the benchmark once with gcc -02 to an x86 as-
sembly file and post-process the assembly to insert the dif-
ferent instrumentation implementations. With that file, we
modify the instructions to generate code that implements
no-instrumentation, full-instrumentation, and
several versions of sampled-instrumentation for both
branch-on-random and counter-based sampling with a wide range
of sampling intervals. Directly modifying the assembly in this
way ensures that all the benchmark binaries are generated with the
same instructions, register usage, stack allocations, and code lay-
out. With the assembler as a constant, we are able to constrain the
execution time variations to just the differences between sampling
techniques.

To provide the reader some context of this microbenchmark, we
collected some statistics on the character processing loop in the
non-instrumented version (for all of our experiments we exclude
the program’s prologue and epilogue from timing simulation). In
the baseline code, the branch-prediction accuracy is 84.5%, which
results from the frequent data-dependent branches: the character

804~ — - - cbs +inst (no-dup)

N —o— cbs (no-dup)
AN - = - cbs + inst (full-dup)
N —o— cbs (full-dup)
- 60 N - - —- brr + inst (no-dup)
3 —a— brr (no-dup)
s D - -~ brr + inst (full-dup)
3 40 —o— brr (full-dup)
= S
@
I
[
a

sampling interval

Figure 13. Overhead of different frameworks. The overheads for branch-
on-random ends up lower than that of counter-based for the more interesting
frequencies. Both implementations benefit from using Full-Duplication
over No-Duplication. The solid lines come from running simulations with
only the framework while the dashed lines also include the instrumentation.

stream of Shakespearian plays has words that are all upper-case
or all lower-case. In addition, both data and instruction caches hit
over 99.5% of the time. As a result, the pipeline is fetching its
maximum of 4 instructions 67% of the time and is handling branch
mispredictions 29.5% of the time. The front-end is idle 1.3% due
to a full reorder buffer and 6.1% for an empty fetch-queue flushes,
but the remaining time, it is running at full speed.

For sampling intervals above 64, we find the sampling over-
head from using branch-on-random is an order of magnitude less
than the overhead from using counter-based sampling. The curves
in Figure 13 show the percent overhead compared to the baseline
for the four combinations of branch-on-random and counter-based
sampling with No-Duplication and Full-Duplication.
The lines show the overhead of branch-on-random decreasing
much faster and further than counter-based as we increase the sam-
pling interval. Branch-on-random’s framework overhead decreases
because fewer taken branch-on-randoms result in less time redirect-
ing on early branch mispredictions.

These results also show that using Full-Duplication low-
ers the framework overhead of not only the counter-based but
also the branch-on-random sampling techniques. Relative to
No-Duplication, Full-Duplication reduces both the
number of sampling sites as well as the number of branches taken
to instrumentation, so the total number of branch mispredictions
also decreases. Even though counter-based sampling benefits a lot
from moving to Full-Duplication, branch-on-random also
benefits and maintains its order-of-magnitude overhead reduction
relative to counter-based sampling.

As the overhead of the sampling framework is a function of how
often instrumentation sites are encountered, we report the overhead
in cycles per instrumentation site. We do this by computing the net
increase of simulation cycles (due to instrumentation and sampling)
by subtracting the cycles it takes to execute the baseline from each
simulation. This allows us to compute an average number of cycles
for each dynamically-encountered sampling site.

The average number of cycles used for each sampling site for
both branch-on-random sampling and counter-based sampling us-
ing Full-Duplication is shown in Figure 14. For a 50%
branch-on-random, 3.19 cycles are spent per site, which intuitively
makes sense as the cost corresponds to 50% of the 5-cycle pipeline
flush plus the overhead of having 2 extra instructions in the pro-
gram stream (the branch-on-random and the unconditional jump
back from instrumentation).

The counter-based sampling sites include a couple of memory
accesses and a backend-resolved branch, which flushes the whole

44 \ N - ——-cbs +inst
—0— cbs
—-—~—-brr+inst

—o— brr

average cycles per site

0 T T T T T T T T !
2 4 8 16 32 64 128 256 512 1024

sampling interval

Figure 14. Average cost of a sampling site. Branch-on-random averages 10
to 20 times fewer cycles than counter-based sampling for frequencies above
64. We only plot the results of Full-Duplication to avoid the clutter of
showing No-Duplication, which has qualitatively similar results.

pipeline if mispredicted; as a result its lower-bound is much higher
than branch-on-random’s. The reason that the counter-based im-
plementation actually has lower overhead sampling at a rate of 2
than 4 comes from the hardware correctly predicting the counter
branches for the former, but larger intervals prevents the pattern
from fitting in the branch predictor’s global history. Comparing the
two sampling techniques at an interval of 1024, we see branch-on-
random going 20 times faster; but in general, it performs 10 to 20
times faster in the interesting interval ranges.

In both Figure 13 and Figure 14, we show the overhead including
the instrumentation costs with dashed lines. Obviously, the over-
head of the instrumentation is a direct function of the complexity
of the instrumentation; for this simple microbenchmark, we use a
relatively low overhead instrumentation, but it can still be clearly
seen how decreasing the sampling rate directly reduces this source
of overhead. As areference, full-instrumentation without
sampling adds an average 4.3 cycles to the baseline per instrumen-
tation site.

6. RELATED WORK

In this section, we briefly describe previous approaches for hard-
ware support for profiling and descriptions of existing uses of LF-
SRs.

Many sampling techniques make use of hardware to some ex-
tent to reduce the profiling overhead. DIGITAL Continuous Pro-
filing Infrastructure (DCPI) leverages simple event counters to di-
agnose the presence and source of performance problems [2] and
to seed the invocation of an emulation-based value profiler [7].
ProfileMe propose longitudinal profiling, which captures all of the
events relating to a single instruction’s execution, in part to enable
DCPI-like tools for out-of-order microarchitectures [11]. The rela-
tional profiling architecture (RPA) enabled annotating instructions
with the type of profile information that should be collected, and
the off-loading of the profile processing to special- and general-
purpose cores [16]. Programmable profiling co-processors have
even been proposed to provide flexible profile collection without
slowing down program execution [9].

In addition to their applications in cryptography and commu-
nications, LFSRs have been previously proposed in computer ar-
chitecture, microarchitecture, and testing. Pseudo-random values
can probabilistically update counters to reduce the size of predic-
tors [27]. Cache coherence can use a dynamic approach as in Band-
width Adaptive Snooping Hybrid (BASH) to leverage the LFSR
as a source of randomness to choose between unicast or broad-
cast [12]. Region-Scout is another cache coherence optimization

that uses an array of LFSRs to record locally-cached regions [24].
LFSRs also help compress the inputs of built-in self-tests by allow-
ing designers to choose seed values used to functionally generate
test vectors [20].

7. CONCLUSION

As the complexity of software systems continues to grow and
society’s use and reliance on these systems grows as well, it is de-
sirable to develop techniques to permit software systems to con-
figure, monitor, optimize, and repair themselves, without human
intervention [19]. In order to achieve any such “autonomic” behav-
iors, a software system will need to continuously collect informa-
tion about its activities, and this information collection will have its
costs.

Branch-on-random, however, brings us a step closer to building
autonomic systems by providing an order-of-magnitude reduction
in the cost of implementing sampling frameworks for instrumenta-
tion. We have described how to architect and implement branch-
on-random with minimal hardware complexity and demonstrated
that branch-on-random is simple to use. Additionally, compared to
existing frameworks, it achieves equivalent accuracy yet provides
significant reductions in overhead. Together, branch-on-random
and performance counters provide a complete, inexpensive solution
that allows profiling both high-level and instruction-level behavior
in even the most performance critical parts of production code.

In addition, because each branch-on-random instruction encodes
its own frequency, it is possible to efficiently implement convergent
profiling [8], by modifying the sampling frequency as information
is collected. In convergent profiling, a high sampling rate is used
initially, but as the profile “converges” the sampling rate can be
reduced, as we merely need to validate that program behavior con-
tinues as we have characterized it. If the low frequency samples
appear out of line with the characterization, sampling rates can be
increased to re-characterize the behavior.

Finally, branch-on-random can potentially be used in non-
profiling situations, anywhere a choice needs to be made and statis-
tical behavior is acceptable. One example is in the CPython’s co-
operative multithreading; to support multithreaded programs on a
non-thread safe interpreter, CPython releases the “global interpreter
lock™ after executing a specified number of bytecodes. A branch-
on-random with a suitable frequency could replace the overhead of
this counting. Another example is using branch-on-random to effi-
ciently select among functionally-equivalent code versions to deter-
mine which is fastest [21]. Usage of branch-on-random could even
assist in extraction of parallelism from sequential code as shown
with Y-branch [6]. Invariably, it is impossible to anticipate all of
the potential uses of a simple, but powerful mechanism like branch-
on-random.

8. REFERENCES

[11 B. Alpern et al. The Jalapeno virtual machine. IBM Systems Journal, 39(1):211-

238, 2000.

J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S.-T. Leung,

R. Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl. Continu-

ous profiling: Where have all the cycles gone? In Proc. 16th Symposium on

Operating System Principles, Oct. 1997.

M. Arnold and B. G. Ryder. A framework for reducing the cost of instrumented

code. In PLDI, pages 168-179, 2001.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovi¢,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo bench-
marks: Java benchmarking development and analysis. In OOPSLA *06: Proceed-
ings of the 21st annual ACM SIGPLAN conference on Object-Oriented Program-
ing, Systems, Languages, and Applications, New York, NY, USA, Oct. 2006.
ACM Press.

[2

3

[5]
[6]

[7]

[8

[9

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[31]
[32]

[33]

[34]

G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for Experimenters. John
Wiley and Sons, 1978.

M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I. August. Revisiting
the sequential programming model for multi-core. In Proceedings of the 40th
IEEE/ACM International Symposium on Microarchitecture, Dec. 2007.

M. Burrows, U. Erlingson, S.-T. Leung, M. T. Vandevoorde, C. A. Waldspurger,
K. Walker, and W. E. Weihl. Efficient and flexible value sampling. In Proceed-
ings of the Ninth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 160—167, Nov. 2000.

B. Calder, P. Feller, and A. Eustace. Value profiling. In Proceedings of the 30th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 259—
269, Dec. 1997.

Y. Chou and J. P. Shen. Instruction path coprocessors. In Proceedings of the 27th
Annual International Symposium on Computer Architecture, June 2000.

J. Dean. Personal communication, Aug. 2007.

J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Z. Chrysos. Pro-
fileme: Hardware support for instruction-level profiling on out-of-order proces-
sors. In Proceedings of the 30th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 292-302, Dec. 1997.

K. Diefendorff. Power4 focuses on memory bandwidth. Microprocessor Report,
13(13):1-8, Oct. 1999.

B. A. Fields, S. Rubin, and R. Bodik. Focusing Processor Policies via Critical-
Path Prediction. In Proceedings of the 28th Annual International Symposium on
Computer Architecture, pages 74-85, July 2001.

S. W. Golumb. Shift Register Sequences. Aegean Park Press, revised edition,
1982.

M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind. Vertical profiling: Un-
derstanding the behavior of object-oriented applications. In Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages and Appli-
cation (OOPSLA), Oct. 2004.

T. H. Heil and J. E. Smith. Relational profiling: Enabling thread level parallelism
in virtual machines. In Proceedings of the 33rd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 281-290, Dec. 2000.

J. K. Hollingsworth, B. P. Miller, and J. Cargille. Dynamic program instrumen-
tation for scalable performance tools. Technical Report CS-TR-1994-1207, Uni-
versity of Wisconsin, Madison, 1994.

Intel Corporation. VTune Performance Analyzer.

J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
36(1):41-52, 2003.

B. Konemann. LFSR-coded test patterns for scan designs. In Proceedings of Eu-
ropean Test Conference, pages 237-242, 1991.

J. Lau, M. Arnold, M. Hind, and B. Calder. Online performance auditing: using
hot optimizations without getting burned. ACM SIGPLAN Notices, 41(6):239—
251, 2006.

C. J. Mauer, M. D. Hill, and D. A. Wood. Full system timing-first simulation.
In Proceedings of the 2002 ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems, pages 108—116, June 2002.

B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin,
K. L. Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyn parallel per-
formance measurement tool. [EEE Computer, 28(11):37-46, 1995.

A. Moshovos. RegionScout: Exploiting Coarse Grain Sharing in Snoop-Based
Coherence. Proceedings of the 32nd Annual International Symposium on Com-
puter Architecture, pages 234-245, 2005.

R. Motwani and P. Raghavan. Randomized algorithms. ACM Comput. Surv.,
28(1):33-37, 1996.

N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and C. Zilles. Hardware
atomicity for reliable software speculation. In ISCA *07: Proceedings of the 34th
annual international symposium on Computer architecture, pages 174—185, New
York, NY, USA, 2007. ACM.

N. Riley and C. Zilles. Probabilistic counter updates for predictor hysteresis
and stratification. In Proceedings of the Twelfth IEEE Symposium on High-
Performance Computer Architecture, Feb. 2006.

I. Silas et al. System level validation of the Intel Pentium-M processor. Intel
Technology Journal, 7(2):37—43, 2003.

M. Smith. Overcoming the Challenges of Feedback-Directged Optiization. In
Proc. Proc. ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation
and Optimization (Dynamo’00), Jan. 2000.

O. Traub, S. Schechter, , and M. D. Smith. Ephemeral instrumentation for
lightweight program proling. Technical report, Harvard University, 1999.
Virtutech AB. Simics full system simulator. http://www.simics.com/.

K. C. Yeager. The MIPS R10000 superscalar microprocessor. /[EEE Micro,
16(2):28-40, Apr. 1996.

M. T. Yourst. Ptlsim: A cycle accurate full system x86-64 microarchitectural
simulator. In Proceedings of the 2007 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), Apr. 2007.

C. B. Zilles and N. Neelakantam. Reactive techniques for controlling software
speculation. In Proceedings of the International Symposium on Code Generation
and Optimization, 2005.

