
A Criticality Analysis of Clustering in Superscalar Processors

Pierre Salverda Craig Zilles

Department of Computer Science

University of Illinois at Urbana-Champaign

{salverda, zilles}@uiuc.edu

Abstract

Clustered machines partition hardware resources to circumvent the

cycle time penalties incurred by large, monolithic structures. This

partitioning introduces a long inter-cluster forwarding latency and

the potential for load imbalance, both of which degrade IPC and

thus counter the cycle time benefits of clustering.

We show that program dataflow can be mapped to clustered

machines so as to achieve an IPC rivaling that of an equivalent

monolithic machine. That is, the IPC penalties observed by ex-

tant schemes are largely an artifact of instruction steering and

scheduling policies. Using critical path analysis, we investigate

and uncover the main causes for this performance loss. By way of

code samples, we illustrate those causes and propose three policies

for mitigating them. First, we introduce a new metric, likelihood

of criticality, and show how it can halve the performance lost to

contention-induced stalls. Second, we develop a stall-over-steer

policy that addresses performance lost to inter-cluster forwarding

delay. Finally, we show that a proactive load-balancing policy is

necessary to improve the distribution of ready instructions among

the clusters. Together, these three policies yield performance on

2-, 4- and 8-cluster implementations of an 8-wide machine that is

within 2, 4, and 6%, respectively, of the monolithic equivalent.

1 Introduction

Out-of-order superscalar execution is a compelling means for ex-

ploiting both instruction- and memory-level parallelism. The for-

mer is necessary for boosting performance when fine-grained par-

allelism exists in the instruction stream; the latter for hiding increas-

ing memory latencies, especially in programs that are memory-

bound. Performance in this execution model is improved by in-

creasing the machine’s issue width and window size. A larger is-

sue width increases the number of instructions executed per cycle,

which improves the machine’s ability to exploit parallelism when it

is available in the instruction stream. A larger window increases the

out-of-order potential of the machine, which is important for hiding

long latency memory operations. Unfortunately, naively scaling is-

sue width and window size significantly constrains the achievable

clock frequency [19].

Clustered microarchitectures are a natural solution to these scal-

ability problems. By replicating structures, a clustered architecture

can achieve a large aggregate issue width and window size. The

Alpha 21264 [14], with 2 execution clusters and a replicated phys-

ical register file at each, is perhaps the best-known example of this

approach. Clustered machines are appealing because they can be

scaled by making structures small and more numerous rather than

larger and monolithic. Many of the power-, clock- and complexity-

related problems encountered by monolithic designs are thereby

circumvented.

Of course, these benefits do not come without cost. Clustered

machines are prone to degraded performance, the two principal

causes of which are inter-cluster communication delays and in-

creased contention for diminished resources at each cluster. The

former can increase the effective latency of instructions by increas-

ing the time it takes to forward their results to their consumers.

The latter effect arises because of the potential for load imbalance,

which reduces the effective aggregate window size and issue width

of the machine. These factors give rise to two conflicting objectives

in the design of a clustered machine: achieving locality to hide the

communication delay from producer-consumer pairs versus achiev-

ing load balance to avoid contention-induced stalls at each cluster.

While the trade-off between locality and load balance lies at

the heart of the performance challenge, understanding the problem

purely in terms of this trade-off is too simplistic. In the control-

intensive programs in which we are interested, not all instructions

contribute equally to performance, so attempting to achieve good

locality and load balance, on average, is somewhat misdirected.

Indeed, there will be cases where many dependent instructions are

not collocated and load is far from balanced, but where performance

is optimal because the few important (critical) instructions are not

penalized.

That criticality is important is, of course, nothing new — it plays

a key role in statically-scheduled clustered architectures, the ear-

liest examples of which date back to the VLIW machines devel-

oped in the early 1980s. Those machines expose clustering at the

architectural level so that it can be considered in the compiler’s

scheduling pass [6, 16]. Within a given scheduling scope, the com-

piler knows the dataflow height and width of each computation, en-

abling it to generate near-optimal schedules by using an integrated

cluster-assignment and scheduling pass [12, 18]. Dataflow height

serves well as a measure of criticality in this framework because of

the static nature of the underlying machine. In contrast, dataflow

height is an impractical and imperfect criticality metric in dynamic

machines. It is impractical because it requires backward dataflow

knowledge and imperfect because execution can be overlapped with

branch resolution and data cache misses.

In this paper, we focus on clustering in dynamically-scheduled

machines, like the one depicted in Figure 1. These machines dif-

fer from their static counterparts in two key respects. First, cluster

assignment and instruction scheduling — two steps that are unified

and implemented by the compiler in the static machines — are now

1

FUint FUfp FUmemFUint FUfp FUint FUfp FUmem FUint FUfp FUmem

Front−end

Cluster 0 Cluster 1 Cluster 2 Cluster 3

FUmem

Window 1 Window 2 Window 3

GLOBAL BYPASS NETWORK

STEER

Window 0

Figure 1. A clustered microarchitecture. The machine comprises a

monolithic front-end and a partitioned execution core. In this case, an 8-

wide issue and execute bandwidth is partitioned equally among 4 clusters.

Cluster assignment is performed by the instruction steering logic. Each

cluster is a self-contained dynamically scheduled execution core: instruc-

tions arriving from steering enter the scheduling window, from which they

will issue when their operands become available. Those operands will either

have been produced locally or will be received — after the global commu-

nication latency has lapsed — from a remote producer via the global bypass

network.

decoupled and are performed, dynamically, in hardware. Second,

scheduling itself is now distributed because the window of in-flight

instructions is partitioned. Together, these differences introduce a

fundamentally different set of challenges for cluster assignment and

instruction scheduling.

Despite a very large body of research in this area, there remain

a number of unanswered questions about the basic characteristics

of the design space. For example, it is not clear what portion of

the observed performance penalties, even in the best results seen so

far, are inherent to clustering as opposed to merely being artifacts

of sub-optimal steering and scheduling policies. Moreover, if sub-

optimal policies are to blame, it is not even clear to what causes

their inefficiencies can be ascribed; there is at present no charac-

terization of the causes, nor a quantification of the extent to which

each contributes to performance loss. These are the questions that

motivate this work. Accordingly, and in contrast to much previous

work, our objective is not to develop mechanisms for achieving bet-

ter performance for a specific microarchitecture. Rather, our aim is

to discover the factors that underly performance penalties in a spec-

trum of microarchitectures, and, in so doing, to define and evaluate

policies (not mechanisms) that are likely to alleviate them. Specifi-

cally, our paper makes the following contributions.

• Potential. In an idealized study (Section 2), we prove the ex-

istence of cluster assignments and instruction schedules that

yield performance almost identical to (within 2% of) the per-

formance of an equivalent monolithic machine. That is, we

demonstrate that penalties observed by extant schemes are not

inherent to the underlying hardware, but are entirely an arti-

fact of the policies used to manage it.

• Attributing lost cycles. We perform a criticality-based anal-

ysis of a “state of the art” steering and scheduling policy to

identify the causes of this loss of performance (Section 3). We

identify two main culprits: contention among known-critical

instructions and load-balancing of critical instructions.

• Policy. To mitigate these effects, we present three policies to

improve steering and scheduling.

– Likelihood of criticality-based scheduling. We intro-

duce the likelihood of criticality (LoC) metric to ex-

tend Fields et al’s binary notion of criticality [10] to

a more continuous spectrum (Section 4). This permits

a criticality-based scheduler to prioritize among critical

instructions more intelligently.

– Stall over steer. We show that, in execute-critical re-

gions of code, it is better to stall steering when a cluster

is full than steer critical instructions away from their

producers (Section 5). The LoC metric can be used to

guide this selective stalling.

– Proactive load-balancing. On machines with narrow

clusters, we show that load-balancing should be per-

formed so as to steer all but the most critical consumer

to other clusters (Section 6). Because the most critical

consumer is often not the first consumer, this requires

learning which early consumers should be proactively

steered away to make room for a subsequent, more crit-

ical, consumer.

For each of these policies, we provide code examples to give the

reader an intuition why they are necessary. In Section 7, we com-

plement these anecdotal examples with performance results from

a timing simulator, thereby also demonstrating the effectiveness of

each of the policies. We show reductions in the penalty due to clus-

tering of one-half to two-thirds for 2-, 4-, and 8-cluster machines,

which brings the slowdown with respect to our idealized study (Sec-

tion 2) to less than 5% for all machines. We conclude in Section 8

with a summary of our contributions and a brief discussion of our

plans for future work, where we aim to develop realistic mecha-

nisms for implementing our various policies.

2 The potential of clustering

Research into clustered designs has tended to focus on implementa-

tion mechanisms and comparative studies of various steering poli-

cies [2–5, 7, 10, 13, 15, 19, 20, 23]. While these are of course im-

portant issues, focusing exclusively on them leaves open the funda-

mental question of how well those mechanisms and policies exploit

the underlying hardware to its fullest. We feel this is an important

subject to address, for two reasons. First, it underpins the tenabil-

ity of clustered microarchitectures as a solution to the scalability

problems alluded to earlier. If performance penalties are inherent

to the clustered approach, and those penalties are as large as they

presently appear to be, the whole design space becomes less attrac-

tive. Second, even if certain penalties are inherent, it is important

to know what they are if we are to gauge the success of different

proposals, and hence justify effort being directed at finding better

solutions.

Our objectives in this section are twofold. First, we use an ide-

alized study to show that clustered microarchitectures are capable

of achieving performance that is almost identical to monolithic ma-

chines. That is, partitioning the window and execution resources

does not, of itself, impose any significant performance penalty. Sec-

ond, we show that there is a significant gap between the hardware’s

performance potential and what a “state of the art” steering and

scheduling scheme extracts from it. We conclude from this evalua-

tion that clustering is indeed an attractive design option — if we can

2

develop the right policies to manage the hardware, then the bene-

fits that clustering offers to clock cycle time, power and complexity

need not be won at any (significant) cost to IPC. These observations

serve as motivation for an in-depth investigation into the causes be-

hind performance loss in the existing schemes, a study to which we

devote the remainder of the paper.

Before we present any data, we describe the architectures and

the simulation infrastructure used throughout our work. We want

to emphasize up front that the specific architectural parameters we

choose are not particularly important — we are interested in the

fundamental trade-offs that underly clustering in general, not in the

specifics of how to make a given machine run faster.

2.1 Methodology

Throughout this paper, we measure the effectiveness of a clustered

machine in terms of an equivalent monolithic machine. We choose

an 8-wide, out-of-order superscalar to serve as that baseline. The

clustered machines are configured so as to apportion the monolithic

machine’s execution resources equally among the clusters. We

therefore examine three cluster configurations: two 4-wide clusters,

four 2-wide clusters and eight 1-wide clusters, henceforth referred

to as the 2x4w, 4x2w and 8x1w configurations, respectively; the

baseline will often be referred to as the 1x8w configuration.

As a vehicle for evaluating these architectures, we make use of

a trace-driven timing simulator. Table 1 summarizes the various ar-

chitectural parameters for the simulator’s 1x8w configuration. The

clustered configurations are identical in all respects, except that, as

noted, the execution resources are divided among the clusters. For

example, the 4x2w configuration, which is depicted in Figure 1,

divides the 128-entry scheduling window into four 32-entry win-

dows at each cluster. Likewise, the 8-wide execution bandwidth is

divided equally among the four clusters, so that each can issue 2

instructions per clock (no more than 2 integer operations, 1 floating

point operation and 1 memory operation per cycle).1 All clusters

load from/store to a shared L1 data cache.

In any clustered architecture, inter-cluster latency and bandwidth

are important design parameters. In our experiments, we modeled

latencies from 1 to 4 cycles, but, due to space constraints, show

results for a 2-cycle latency only. Although the absolute perfor-

mance figures differ for the various latencies, the trends we ob-

serve, and the conclusions we draw from them, do not. Indeed,

the observations we make relate primarily to properties of program

dataflow, which are affected, first and foremost, by the number and

width of the clusters, not by the latency and bandwidth among

them. In terms of bandwidth, we assume the global bypass net-

work has enough capacity to support peak execution rates, so we

do not model contention for communication slots. Nonetheless, we

do monitor inter-cluster communication and find that, on average,

our policies incur 0.12, 0.2 and 0.25 global values per instruction

for the 2-, 4- and 8-wide configurations, in all cases slightly less

than the baseline steering policy we compare our schemes against

(described in more detail later). A more detailed analysis of the

effects of a limited-bandwidth interconnect is beyond the scope of

this paper.

We simulate an infinite 20-cycle L2 cache in order to reduce

1We round up partial resources, so each cluster in the 8x1w machine has

a memory port and a floating point ALU.

Front-

end

8-wide, 13 stages to dispatch. Perfect instruction

cache. gshare branch predictor with 16 bits of global

history.

Issue 128-entry scheduling window, 256-entry ROB.

Execute Up to 8 instructions per clock, any mix of up to 8 in-

teger instructions, 4 floating point and 4 memory in-

structions (load or store). Instruction latencies match

the Alpha 21264 [14] (e.g., 3 cycle load-to-use). Per-

fect memory disambiguation.

Memory 32KB 4-way set associative L1 cache, 2 cycle access

time. 20-cycle, infinite L2 cache.

Table 1: Baseline (monolithic) machine parameters.

simulation times and cache warm-up times. We verified that these

experiments have very similar CPI breakdown (as we present in

Section 3) to runs that use a finite L2 cache and a 200 cycle mem-

ory, except for a somewhat smaller CPI contribution from memory.

Thus, our results may (conservatively) overestimate the negative

impact of clustering.

Since we are specifically interested in non-numeric programs,

we use the Spec 2000 integer benchmarks in all our simulations.

Benchmarks are compiled using the DEC C Alpha compiler (V5.9-

005), with peak optimization, but no profile feedback. For each

benchmark, we average results from three 100 million instruction

runs (after warming up the branch predictor and cache) starting at

3, 5 and 8 billion instructions into the run.

2.2 An idealized study

To explore the performance potential inherent to clustered hardware

configurations, we examine traces of instructions retiring from the

1x8w machine’s back-end. Using a list scheduler configured for

each of our cluster configurations, we then build schedules for the

trace.2 We use the term schedule here to denote a placement (at

a cluster) and a slotting (into an issue slot) of each instruction in

the trace. That is, our list scheduler performs both steering and in-

struction scheduling in a single pass. The scheduler adheres to the

per-cycle issue constraints imposed by the underlying hardware be-

ing modeled, and also imposes the global communication penalty

when values are communicated between clusters. We are also true

to the fetch constraints imposed by the 1x8w machine’s front-end:

an instruction cannot be scheduled earlier than the time it was dis-

patched into the machine’s out-of-order window, and the latency of

branch mispredictions is observed.

The analysis we perform is idealized in two main respects. First,

the scheduler has a global (monolithic) view of all in-flight instruc-

tions and thus treats only the functional units themselves as clus-

tered. This is deliberate — we are interested in the basic capabili-

ties of the underlying hardware, not in the penalties introduced by

policies used to manage it. Second, the scheduler has exact future

knowledge because it sees all instructions in a region at once. It

uses this information to prioritize instructions, giving precedence

to those from which long dataflow chains emanate and to those that

2We schedule the whole execution trace by dividing it into regions that

are separated by instructions — mispredicted branches, in particular — on

the critical path. By summing the spans of all schedules thus obtained, we

get a conservative estimate of overall runtime.

3

1.00

1.01

1.02

1.03

1.04
n

o
rm

a
li

ze
d

 C
P

I

2 4 8
bzip2

2 4 8
crafty

2 4 8
eon

2 4 8
gap

2 4 8
gcc

2 4 8
gzip

2 4 8
mcf

2 4 8
parser

2 4 8
perl

2 4 8
twolf

2 4 8
vortex

2 4 8
vpr

2 4 8
AVE

Figure 2. Idealized list scheduling. Bars labeled ‘2’, ‘4’ and ‘8’ denote the 2x4w, 4x2w and 8x1w clustered configurations, respectively. CPI is

normalized to that of the 1x8w configuration.

reside on the backward dataflow slice of mispredicted branches.

The scheduler takes locality into account by trying to collocate con-

sumers with their producers. When coupled with the depth-based

priority scheme, this tends to keep long, likely-critical, dataflow

chains collocated, and thus free from global delays.

Figure 2 plots the schedule times we obtained using the afore-

mentioned approach. We make two observations about the data.

First, all clustered configurations achieve average performance that

is less than 2% slower than the 1x8w configuration.3 It appears that

partitioning the underlying hardware does not, of itself, impose any

fundamental limits on how close the machine’s IPC can approach

that of the monolithic equivalent.4 This result permits us to claim,

in Section 2.3, that state of the art schemes for assigning instruc-

tions to clusters are significantly underperforming.

A second observation relates to benchmarks bzip2, crafty

and vpr, for which performance, particularly on the 8x1w config-

uration, stands in contrast to the other benchmarks. From our crit-

ical path analysis (discussed in Section 3), we found that the bulk

of the discrepancy — about 70% of extra cycles in the benchmarks

overall and over 80% in the three worst-performing benchmarks —

can be attributed to a single cause: convergent dataflow. This prob-

lem arises when dyadic instructions consume values on dataflow

edges that both have little or no slack. To a large extent, convergent

dataflow imposes fundamental, though small, limits on the perfor-

mance potential of a clustered machine.

In the case of bzip2 and, to a smaller degree, in crafty,

convergence incurs penalties via global communication. Figure 3

shows why. For the 8x1w configuration, the list scheduler is as-

signing instructions exactly as indicated in Figure 3b, and is there-

fore performing optimally on that code; convergence in this case

imposes a fundamental limit on the performance potential of the

1-wide configuration. In the 4x2w and 2x4w configurations, how-

ever, the scheduler does not always collocate the producers that pre-

cede convergence, so it occasionally incurs a global penalty in both

cases; hence the relatively poor performance shown by the sched-

uler on these configurations as well. Conceivably, the scheduler

could be enhanced to deal more effectively with these scenarios.

Convergence in vpr incurs contention stalls. In this case, the

convergence occurs in dataflow “hammocks”, where a single in-

struction produces a value for two chains of consumers (diverging

3These results are remarkably stable across the various inter-cluster la-

tencies we modeled. For example, with a 4 cycle global penalty, average

performance loss for the 2x4w and 4x2w configurations is still below 2%;

the 8x1w configuration loss degrades to a little over 4%.
4Instruction replication, which has been advocated for statically-

scheduled clustered machines [1, 17], therefore does not appear to be nec-

essary for dynamic machines.

24135 (l d) 246 (l d)7 (x o r)8 (b r *)
13 2478 5 6f o r w .d e l a y 13 785 613 2478 5 6c l u s t e r 0 c l u s t e r 1 c l u s t e r 0 c l u s t e r 0

b) 1 � w i d e c l u s t e r s c) 2 � w i d e (1 m e m) d) 4 � w i d e (2 m e m)a)
Figure 3. An example of convergent dataflow in bzip2. (a) Dataflow

leading into a mispredicted branch; nodes are labeled with their fetch or-

der and their operation type (unlabeled instructions are single-cycle integer

operations). (b) The optimal allocation for 1-wide clusters incurs one for-

warding delay; there would be 3 cycles of contention if it was assigned to

one cluster. (c) With 2-wide clusters with a single memory port there is a

single cycle of contention for the memory port. (d) With clusters that have

2 memory ports this code could execute at full speed.

dataflow), which, in turn, subsequently converge at a dyadic con-

sumer. When this occurs, the scheduler attempts to collocate both

consuming chains with the single producer. On the 8x1w configu-

ration, this incurs a serialization of otherwise parallel work, which

manifests itself as resource contention. For the 8-cluster machine,

these slowdowns are unavoidable — either contention stalls will oc-

cur or global penalties must be incurred. In contrast, the 4x2w and

2x4w configurations, which admit some parallelism intra-cluster,

do not suffer from this problem.

In general, convergent dataflow poses a difficult problem for

clustered machines because dealing with it requires advance knowl-

edge that convergence is imminent. Even with forward knowledge,

which our idealized scheduler has, there is no single policy that

caters for all scenarios — there are cases where collocation is bet-

ter (e.g. bzip2-like convergence on the 4x2w configurations) and

cases where load-balancing is potentially better (e.g. large ham-

mocks on the 8x1w configurations). For the 8x1w configuration,

in particular, the problem is a fundamental one because the de-

mand for parallelism necessarily incurs either global communica-

tion penalties or contention stalls. That said, the overall effect is

still small — the 8x1w configuration is never more than 4% slower

than the monolithic schedule. Clearly, critical dataflow in these

benchmarks seldom demands support for intra-cluster parallelism;

most parallelism can be exploited inter-cluster.

4

1.0

1.1

1.2

1.3

1.4
n

o
rm

a
li

ze
d

 C
P

I

2 4 8
bzip2

2 4 8
crafty

2 4 8
eon

2 4 8
gap

2 4 8
gcc

2 4 8
gzip

2 4 8
mcf

2 4 8
parser

2 4 8
perl

2 4 8
twolf

2 4 8
vortex

2 4 8
vpr

2 4 8
AVE

Figure 4. Focused steering and scheduling. Like Figure 2, bars labeled 2, 4 and 8 denote the 2-, 4- and 8-cluster machines. In contrast to that figure,

however, the scale on the y-axis is now larger by an order of magnitude.

2.3 The state of the art

Having shown that clustered architectures are capable of monolithic

performance, we now consider the performance that extant schemes

are achieving. For this purpose, we chose the focused steering and

scheduling policy proposed by Fields et al [10]. This is representa-

tive of the state of the art in terms of policies for managing dynamic

clustered machines. It serves, therefore, as a good basis for quanti-

fying the difference between what hardware can achieve in theory

and what current policies are extracting from it in practice.

The focused steering and scheduling scheme equips the pipeline

with a criticality detector that samples the retiring instruction

stream, looking for instructions whose execution resides on the

program’s critical path. Results from the detector feed a critical-

ity predictor, which is a PC-indexed table of saturating counters.

The counter for a given PC is incremented when the correspond-

ing instruction is detected as critical, and decremented otherwise;

when that value exceeds a certain threshold, the instruction is clas-

sified as critical. The machine uses a dependence-based steering

policy [13], modified to use output from the criticality predictor:

whenever there is a choice of cluster to which a consumer can be

sent, the one holding the critical producer is given preference. In

addition, instruction scheduling logic is modified to give priority to

critical instructions, the objective being to reduce the exposure of

critical instructions to contention-induced stalls.

We have incorporated the Fields critical-path detection logic into

our simulation environment and implemented the focused steering

and scheduling policies. The performance results we obtain, which

are in general agreement with those published by Fields et al, are

plotted in Figure 4. Whereas performance of the 2x4w configura-

tion is usually within 5% of the monolithic machine, the 4x2w con-

figuration shows several slowdowns in excess of 10%; the 8x1w

configuration averages a slowdown of 20%. Overall, these figures

correspond to an order of magnitude increase in the penalties in-

curred by the list scheduler (Figure 2). We devote the remainder of

the paper to an analysis of the effects that underly this discrepancy.

3 Analysis of the lost cycles

In light of the data presented in the previous section, an obvious

question arises: “Why do extant steering and scheduling policies

significantly underperform?” While it is clear that forwarding de-

lay and load balance underly the performance problems, aggregate

statistics relating to these metrics are not meaningful — many in-

structions can incur these penalties without impacting the overall

execution time [9]. That is, we are only interested in cases where

forwarding delay and contention stalls contribute directly to the

program’s execution time.

To attribute runtime cycles lost to these penalties, we use the

critical path model developed by Fields et al [10]. This involves

post-processing an execution trace to find a chain of dependences

— including constraints imposed by fetch, dataflow and commit —

that together determine total runtime. Having thus delineated a crit-

ical path, we then attribute cycles to inter-cluster forwarding and re-

source contention as follows. Each time critical producer-consumer

dataflow crosses clusters, we attribute 2 cycles to forwarding delay.

Contention cycles are attributed by adding all critical execute cy-

cles not accounted for by functional unit latency, forwarding delay,

and memory latency.

It should be noted that our attributions are not always unique.

Previous work has demonstrated the presence of parallel critical

and near-critical paths [8]. Thus, a performance improvement is not

guaranteed if slowdowns on only one critical path are addressed.

Nevertheless, we find this methodology is accurate enough to pro-

vide insight into the behavior of clustered machines.

Figure 5 shows the composition of the critical path for the fo-

cused steering and scheduling policy (same data as Figure 4). The

cycle breakdown shows that, even with dependence-based steering

and focused scheduling, the critical path frequently suffers from

clustering-induced penalties: it often crosses clusters (forwarding

latency) and it often stalls because critical instructions are not be-

ing executed as soon as they are ready (contention). On occasion,

the execution time that we attribute to these two effects exceeds the

slowdown relative to the monolithic machine. As noted earlier, this

does not suggest that we will outperform the monolithic machine if

we eliminate these stalls. Rather, this is indicative of a shift in the

critical path — by introducing stalls, the clustering has forced what

was previously a near-critical path to become critical.

Much of the observed change in the critical path is a shift from

fetch criticality to execute criticality [10]. This occurs because the

back end is no longer keeping up with the front end, causing the

window to fill quicker than it drains. Instructions are, as a re-

sult, more likely to be put into the window before they are data

ready, making them execute-critical. While this is evidence that

clustering is having an impact, it does not provide insight into why

clustering-induced stalls remain, despite the criticality-based steer-

ing and scheduling policies.

To answer that question, we can zoom in on the critical path

to find the main contributors to contention and forwarding cycles.

Figure 6 summarizes the results of that analysis. For contention-

related stalls (Figure 6(a)), we find that as much as two-thirds come

from instructions delayed in spite of being correctly predicted as

5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
n

o
rm

a
li

ze
d

 C
P

I fwd. delay

contention

execute

window

fetch

mem. latency

br. mispr.

1 2 4 8
bzip2

1 2 4 8
crafty

1 2 4 8
eon

1 2 4 8
gap

1 2 4 8
gcc

1 2 4 8
gzip

1 2 4 8
mcf

1 2 4 8
parser

1 2 4 8
perl

1 2 4 8
twolf

1 2 4 8
vortex

1 2 4 8
vpr

1 2 4 8
AVE

Figure 5. Critical path breakdown for monolithic and 2-, 4-, and 8-cluster machines using focused steering and scheduling. All results are

normalized to the performance of a monolithic machine (labeled 1).

0

1

2

to
ta

l
e
v

e
n

ts
 (

m
il

li
o

n
s)

other

critical

2 4 8

bzip2

2 4 8

crafty

2 4 8

eon

2 4 8

gap

2 4 8

gcc

2 4 8

gzip

2 4 8

mcf

2 4 8

parser

2 4 8

perl

2 4 8

twolf

2 4 8

vortex

2 4 8

vpr

2 4 8

AVE

(a) Contention stalls.

0

2

4

6

to
ta

l
e
v

e
n

ts
 (

m
il

li
o

n
s)

other

dyadic

load bal.

2 4 8

bzip2

2 4 8

crafty

2 4 8

eon

2 4 8

gap

2 4 8

gcc

2 4 8

gzip

2 4 8

mcf

2 4 8

parser

2 4 8

perl

2 4 8

twolf

2 4 8

vortex

2 4 8

vpr

2 4 8

AVE

(b) Forwarding delay.

Figure 6. Where the lost cycles went. (a) Contention stalls among critical instructions are incurred predominantly by instructions that have been

predicted critical. (b) Forwarding delay is incurred by critical instructions mainly as a result of load-balance steering; only in bzip2 and crafty, which

have an abundance of convergent dataflow, do dyadics dominate.

critical.5 We will show in the next section that such stalls occur

because multiple predicted-critical instructions are contending for

the same resources. In terms of forwarding cycles (Figure 6(b)), we

find that the dominant cause is load-balance steering. This occurs

when an instruction’s critical source operand will be produced by a

cluster that is currently full; the consumer is in this case assigned

to the cluster with the fewest in-flight instructions.

In the sections that follow, we demonstrate these effects by way

of code examples and then discuss changes in policies that can ad-

dress them. First, in Section 4, we show that the contention problem

arises from Fields’s binary notion of criticality. What is needed is a

more continuous spectrum that will allow us to distinguish between,

and hence prioritize among, critical instructions. We introduce the

notion of likelihood of criticality for this purpose. In Section 5, we

then demonstrate that load balancing is exactly the wrong thing to

do when code is execute-critical; it is preferable to stall instruction

steering when the desired cluster is full. We also show that likeli-

hood of criticality is a good metric for discerning execute-critical

regions of code, and hence for driving the decision to stall rather

than steer. Finally, we show in Section 6 that, as a positive side

effect of stalling on critical nodes, we achieve an improved distri-

bution of ready instructions. However, we find that a number of

factors limit the extent to which this benefit can be felt. To allevi-

ate that problem, we need proactive load-balancing to push non-

critical consumers away from their producers.

5In other words, contention does not arise because the criticality predic-

tor produces false negatives. Instructions that are truly critical are correctly

predicted as such.

4 Likelihood of criticality

The effect that underlies the contention stalls incurred by predicted-

critical instructions is most easily demonstrated with an example.

Figure 7 shows a loop from the benchmark vpr. The dataflow ex-

hibits a spine and ribs structure, a common feature in programs.

The dominant spine, which flows through the instruction labeled

b, computes a loop-carried dependence. Dataflow periodically di-

verges from this spine to feed the ribs, which terminate on stores

and branches; the rib that starts with the instruction labeled a in-

cludes a hard-to-predict branch.

The contention problem arises between instructions a and b.

Both of these are frequently predicted as critical because both are

on the backward slice of the (critical) mispredicted branch. Since

both instructions consume from the same source register, they are

both routed by the dependence-based steering policy to the same

cluster. Being both ready to execute at the same time, they will

contend for an issue slot on a machine with 1-wide clusters. The

scheduler, which sees both as critical, breaks ties by choosing the

older instruction — in this case, instruction a. This is the wrong

choice for every iteration but the last, because only in the last itera-

tion is instruction a actually critical; on all other iterations, instruc-

tion b (the truly critical one) incurs a contention stall.

This problem arises because of the binary nature of the criticality

predictions. If we instead predict how likely an instruction is to

be critical — b is much more likely to be critical than a — and

prioritize instructions based on that likelihood, we can achieve a

better schedule than with a prediction of critical/not-critical.

To address this problem, we introduce the likelihood of critical-

6

b aB R L D L DL DL D F P L DL D L DL DB R * S TS T f r o m : g e t _ h e a p _ h e a d ()m i s p r e d i c t i n g b r a n c h
Figure 7. A code example demonstrating the source of contention-

related stalls. The critical path, which ends in a mispredicted branch

(BR*), is highlighted. Both instruction a (on the rib) and b (on the spine)

are predicted critical, but instructions on the spine are actually critical more

often.

ity (LoC) metric. We assign an LoC of n% to a static instruction if

n% of all previous dynamic instances of that instruction have been

critical. That is, an instruction’s LoC is the frequency at which it

has been critical in the past. While this does not tell us the true

criticality of any given instance of an instruction (that would re-

quire knowing exactly which dynamic branches are mispredicted,

for example), we find that past criticality is a good indicator of fu-

ture criticality. To verify that this is indeed the case, we modified

our idealized list scheduler (discussed in Section 2.2) to prioritize

instructions based solely on LoC values. In other words, we re-

move from the list scheduler its knowledge of instantaneous criti-

cality, replacing it instead with knowledge only of average previous

criticality. The results (not shown) indicate that the impact on the

scheduler is marginal: the average performance loss moves from

∼1% to 1.5% and from 2% to 2.7% for the 4x2w and 8x1w config-

urations, respectively; the performance loss on the 2x4w configu-

ration remains unchanged at less than 0.5%. In contrast, equipping

the scheduler with only a binary notion of criticality shifts the per-

formance losses to 1.5%, 5% and 9.8% on the 2-, 4- and 8-cluster

configurations, respectively.

Figure 8 shows that the LoC metric yields quite a wide distri-

bution of values, indicating that it has the potential to distinguish

numerous degrees of criticality. The vertical dashed line in the fig-

ure shows the granularity achieved by the binary predictor used by

Fields et al.6 To understand the benefit of being able to distinguish

various degrees of criticality, it is useful to view an LoC value as a

measure of the expected cost of making a wrong decision on an in-

struction. For example, imposing a 2-cycle forwarding delay on

an instruction with an LoC of 80% would, for each instance of

that instruction, add about 1.6 cycles to the program’s execution

time. Likewise, an instruction with an LoC of 25% would incur

0.5 cycles for each instance. Being able to distinguish these two

otherwise equally critical instructions, and hence prefer the former,

potentially saves 1.1 cycles on each instance.

The utility of the LoC metric stems from the fact that it suc-

6The Fields predictor uses a 6-bit saturating counter that increments by

8 when training critical, and decrements by 1 when training non-critical;

the threshold value for predicting critical is 8. Thus, 1 in 8 instances being

critical is sufficient for an instruction to be classified as critical.

0

2

4

6

8

10

%
 d

y
n

am
ic

 i
n

st
.

53%

criticalnot-critical

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

static likelihood of criticality

Figure 8. Distribution of LoC values. Data is averaged across all 12

benchmarks.

cinctly expresses dynamic behavior in terms of a single, numeri-

cal property of each static instruction. In contrast, a metric like

slack [9] is much harder to express as a static property. This is be-

cause slack is measured as a cycle count for each dynamic instance,

so different instances can have very different slack values. For ex-

ample, branches, when mispredicted, have no slack; when predicted

correctly their slack is very large, limited only by the size of the

instruction window. From a static instruction point of view, this

variation can be expressed as a histogram of the different amounts

of slack observed by an instruction, but comparing two instructions

on that basis is not very practical.

In Section 7, we show that the richer criticality information af-

forded by LoC can be used to reduce the number of contention-

related stalls by a factor of two. Perhaps more importantly, LoC

provides a general metric for controlling the resource allocation that

we employ in Sections 5 and 6.

5 Stall over steer

In Section 3, we demonstrated that the dominant source of inter-

cluster forwarding latency on the critical path is load-balance steer-

ing. In this section, we show how this problem can arise in regions

of code that are execute-critical.

We begin with a hypothetical program that consists entirely of a

single chain of dependent add instructions. Such a program has an

ILP of 1 and no branch mispredictions, so it can be fetched much

faster than it can be executed. In other words, the program is exe-

cute critical; the fetch rate is not affecting the execution rate. On

a clustered machine, this will result in the dependence chain fill-

ing the window of the cluster to which it is steered. When this

happens, the existing dependence-based steering policy reacts by

load-balancing — it will assign the next instruction in the chain

to the least-utilized cluster. And so the process repeats: upon fill-

ing the second cluster, load-balancing redirects the chain to a third

cluster until it too fills. As Figure 9 shows, the net effect of this

load-balancing is the introduction of one forwarding delay into the

dependence chain every N instructions, where N is the size of a

cluster’s window.

Figure 9. Load-balance steering

causes a single dependence chain

to be spread across all of the clus-

ters. Performance would be better if

steering had stalled when the desired

cluster was full.

A BC D E F G H I J K L
7

AB
ABCD FI P M NO GQ c y c l e 0

FG DABC
I

c y c l e 1
FG DBC A IMEH JK L

EH
J EH

JK LO N PQc y c l e 2
Figure 10. An illustrative example from vpr exhibits spreading of the critical path across clusters. The dataflow graph on the left shows the fetch

order (alphabetical order) and the relative criticality of nodes (darker is more critical); instruction L is a frequently mispredicted branch. On cycle 0,

the cluster containing the spine fills up. On cycle 1, one instruction of the spine executes, making room for C, which fills the cluster. D is steered to

another cluster and is followed by E, F, G, and H. Because the second cluster is now full (for illustration, we are assuming 5 entries per cluster), I and

J are assigned to different clusters. On cycle 2, instruction P cannot be steered to the second cluster, where F resides. In this example, the critical path

ABCDFPQ incurs two unnecessary forwarding delays.

For this hypothetical piece of code, it would be preferable to

stall the steering logic until a space becomes available at the de-

sired cluster. Doing so would not slow the program down because,

as we noted already, the fetch rate is not determining the execu-

tion rate. Instead, stalling would eliminate the forwarding delay

from the dataflow chain entirely, permitting the clustered machine

to perform equivalent to a monolithic one.

Real programs are of course not as simplistic, but this type of

behavior does indeed occur. Figure 10 is an example of how the

critical path in our vpr code sample (from Section 4, slightly sim-

plified) incurs even more forwarding delays than the single depen-

dence chain. We believe this is the effect that is responsible for

the observation, made by Balasubramonian et al, that low ILP pro-

grams perform better on 4 1-wide clusters than on 16 1-wide clus-

ters [2]. In effect, a smaller number of clusters increases the chance

(from 1-in-16 to 1-in-4) that critical dependences are steered to the

same cluster when the load-balancing occurs.

The potential benefits of stalling the front-end have also been

reported by González et al [11]. They propose a scheme that uses

the number of in-flight instructions at each cluster as a means for

controlling the decision to stall. However, cluster load is a very

coarse, and potentially misleading, measure of the phenomena that

make stalling beneficial. In our hypothetical code example, stalling

makes sense because the program is in an execute-critical region. In

contrast, some program regions are fetch critical, in the sense that

they are not critical themselves, but they need to be fetched as fast

as possible to reach a critical computation, such as a mispredicting

branch slice, that occurs in the future. For fetch-critical code, load-

balancing is preferable when a desired cluster becomes full because

it does not delay fetching of critical computations that lie ahead in

the instruction stream.

To distinguish cases where stalling is preferable to steering, we

can use the LoC metric. Instructions with a high LoC are likely

to be execute critical, so stalling is preferable; those with a low

LoC are probably fetch critical, in which case stalling would do

more harm than good. Empirically, we find that stalling instructions

with an LoC exceeding a 30% threshold strikes a good balance.

Figure 11 shows how the vpr example behaves when nodes with

high LoC values are stalled and all others are load-balanced.

A second benefit of the stall-over-steer policy is also made appar-

G IMBCDAABC CD FAB D FPBC G IE EH JK L EH JK L M NOc y c l e 1 c y c l e 2 c y c l e 3 c y c l e 4
Figure 11. Stalling steering for execute-critical instructions prevents

cross-cluster penalties. Starting from the cycle 0 state in Figure 10, in

cycle 1 only instruction C is steered, because D is critical and its desired

cluster is full. In cycle 2, there is space for D and, because E is not suffi-

ciently critical, it is load-balanced to the second cluster. F is steered in cycle

3, after which non-critical G and I are load balanced, and H, J, K, and L are

dependence-based steered to cluster 2. In cycle 3, instructions up to P are

steered, but Q must wait until the next cycle. While this approach does not

fetch the program as quickly, it preserves the critical slice on one cluster,

and there is no benefit to fetching the program faster than it can execute.

ent in Figure 11: the machine is now doing a better job of distribut-

ing parallel work among the clusters. For example, instructions E,

G, and I are not sufficiently critical for stalling, so they are load-

balanced to other clusters where they can execute in parallel with

the primary dependence chain. In contrast, the non-stalling scheme

sends all of D’s successors to the same cluster, where they will con-

tend for a single issue slot. This leads us to our next observation

about load-balancing.

6 Proactive Load-balancing

We have just seen that a positive side-effect of the stall-over-

steer policy is improved load-balancing of less critical instructions.

While this is the desired load-balancing behavior, relying only on

the selective stalling mechanism to achieve it has a number of draw-

backs. First, it only occurs after a cluster has filled — it is reactive.

Second, it requires that there be a clearly identifiable critical depen-

dence chain; some high-ILP regions have no instructions with suf-

ficiently high LoC. Finally, the load-balancing applies only to non-

critical instructions that diverge from the main dependence chain;

instructions that diverge from other, less-critical chains do not like-

wise benefit.

8

i n t a =i n t * A =f o r (i = 0 ; i < N ; + + i) {i f (A [i] = = a) {b r e a k ;}}
L 7 : a d d l $ 4 , 1 , $ 4l d l $ 7 , 0 ($ 2)c m p l e $ 4 , $ 5 , $ 3l d a $ 2 , 4 ($ 2)c m p e q $ 7 , $ 0 , $ 6b n e $ 6 , L 3b n e $ 3 , L 7L 3 :

a d d lc m p l eb n e c m p e q l d ab n el d la d d lc m p l eb n e a d d lc m p l eb n e c m p e q l d ab n el d l c m p e q l d ab n el d l(a) (b) (c)
Figure 12. An example loop with divergent dataflow. (a) C-code for a loop with an early exit. (b) The corresponding Alpha assembly, which has

been optimized by the compiler to have two separate loop-carried dependences. (c) A dynamic dataflow graph with three iterations of the loop (shaded in

different colors) that shows how the instructions diverge from the loop-carried dependences.

The code example in Figure 12 demonstrates why a more gen-

eral, proactive load-balancing scheme is needed. When dynam-

ically unrolled, this code forms two trees of diverging dataflow.

Because a dependence-based steering mechanism will try to col-

locate instructions with their dataflow producers, each tree will be

assigned to a single cluster until it fills. This is clearly not the de-

sired behavior. For example, on the 8x1w configuration, it will in-

troduce contention stalls that will cause the branches to resolve 5 to

10 instructions later than they would have on a monolithic machine.

One approach that has been adopted for proactive load-balancing

is steering only the first dependent instruction to a given producer;

all others are load-balanced [15, 19]. While this technique does a

good job of distributing the consumers of an instruction, it has the

drawback that it can introduce forwarding delay onto the critical

path. This will happen when the first consumer — the one that gets

collocated with the producer — is not the most critical one. For ex-

ample, in the code sample of Figure 12, the most critical consumer

of the loop-carried dependence produced by the addl instruction

is the next instance of itself, yet this is also the last consumer of

that value (it must be because it performs a destructive update of

the register). If the forwarding delay is 2 cycles, steering this crit-

ical consumer to a different cluster reduces the IPC of this code

from a potential peak of 7 down to 7/3, as shown in Figure 13(a).

Contrived though this example might at first seem, we find that the

potential for this behavior is exhibited broadly across the SPEC in-

teger benchmarks: of all the critical instructions that have multiple

consumers, more than 50% do not have their most critical consumer

first in fetch order.

Figure 13(b) shows a more preferable distribution of instruc-

tions. In this case, the most critical consumer is retained at the pro-

ducer’s cluster and the less critical consumers are load-balanced.

The steady-state ILP is once again 7, and branch resolutions are

delayed only two cycles, which is as good as can be done on a ma-

chine with single-issue clusters.

Achieving this schedule is challenging on a machine that per-

forms steering in fetch order — it requires knowing, in advance,

which consumer is the critical one and, by implication, which con-

sumers are not. Since it is not our objective in this paper to discuss

mechanisms, we will not attempt to propose a scheme for identify-

ing the most critical consumer. The results we present in Section 7,

which demonstrate the potential effectiveness of a proactive load

balancing policy, are therefore based on a scheme that is unlikely

to be practical in hardware.

That said, we do believe that a practical scheme can be devel-

c m p l ea d d lb n e l d lc m p e qb n e l d a a d d l c m p l e l d l l d ab n e c m p e qb n ea d d lc m p l eb n e l d a c m p e qb n el d la d d l c m p l eb n e l d lc m p e qb n el d ac m p e qc m p l ea d d lc m p l eb n e a d d lb n e
C C C C C CC C C C(a) (b)

l d lc m p e qb n e l d lb n eC Cl d a C Cl d a C CC CC C
Figure 13. Load-balancing subsequent consumers can seriously impact

ILP. Using the branch computation from Figure 12: (a) if only the first

consumer is collocated, the recurrence will be spread across clusters, in-

curring the cross-cluster (CC) forwarding penalty; (b) in this case, the first

consumer should be load-balanced to retain the “spine” on a single cluster

to preserve the steady-state ILP.

oped. We are led to that conclusion by an analysis of producer-

consumer relationships in our simulator’s execution traces. Two

properties of dataflow — one viewed from the producer’s perspec-

tive and the other from that of the consumer — were uncovered by

that analysis.7 First, the most critical consumer for a given pro-

ducer tends to be statically unique. We found that about 80% of

all values produced can be associated with a statically unique most-

critical consumer. Second, a given consumer tends either to always

be the most critical consumer of its producer’s value, or is almost

never the most critical one. That is, there is a bimodal distribution

of static consumers’ tendency to be the most critical one. While this

analysis is not conclusive, it does bode well for dynamic schemes

that either associate producers with their most-critical consumer, or

that tag consumers as the most critical for their operand.

7 Performance Results

In previous sections, we diagnosed and proposed policies for rem-

edying the IPC penalties incurred by clustering. Our objectives in

this section are twofold. First, we aim to give empirical evidence

in support of our assertions that the previously identified causes for

performance loss are, in large part, responsible for the IPC differ-

ence between existing policies and what is potentially achievable

(as described in Section 2.2). Second, we aim to demonstrate that

the policies we have defined are indeed effective at mitigating those

7Due to space constraints, we omit plots of our results and instead sum-

marize the main trends we observed.

9

0.9

1.0

1.1

1.2

1.3
n

o
rm

a
li

ze
d

 C
P

I

fwd. delay

contention

other

2 l s 4 l s 8 l s p
bzip2

2 l s 4 l s 8 l s p
crafty

2 l s 4 l s 8 l s p
eon

2 l s 4 l s 8 l s p
gap

2 l s 4 l s 8 l s p
gcc

2 l s 4 l s 8 l s p
gzip

0.9

1.0

1.1

1.2

1.3

n
o

rm
a

li
ze

d
 C

P
I

2 l s 4 l s 8 l s p
mcf

2 l s 4 l s 8 l s p
parser

2 l s 4 l s 8 l s p
perl

2 l s 4 l s 8 l s p
twolf

2 l s 4 l s 8 l s p
vortex

2 l s 4 l s 8 l s p
vpr

2 l s 4 l s 8 l s p
AVE

Figure 14. The proposed policies reduce the penalty of clustering by 42%, 57%, and 66% for 2-, 4-, and 8-cluster machines, respectively. The

first bar for each configuration (2, 4, and 8 clusters) reports the performance of Fields et al’s focused steering and scheduling (also shown in Figure 4).

The bars labeled l add LoC-based scheduling. The bars labeled s add stalling rather than load-balancing for high LoC (execute-critical) instructions. The

bars labeled p add proactive load balancing to the 8-cluster case (our implementation does not benefit the wider clusters). All bars are normalized to a

monolithic (1-cluster) machine that uses LoC-based scheduling.

performance problems. To this end, we have implemented our poli-

cies in the timing simulator and evaluated their performance on the

Spec Integer benchmarks. We stress that we are not advocating

these particular implementations; our goals, as noted already, are

merely to substantiate our claims quantitatively.

We implemented a likelihood of criticality predictor by track-

ing the fraction of executions that were detected as critical, using

the critical path profiling framework developed by Fields et al [10].

In other work, we have found that stratifying LoC into 16 levels

produces results almost equivalent to a counter with unlimited pre-

cision. Intuitively this makes sense, as 16 levels generally distin-

guishes two instructions that differ in criticality by as little 7%; this

will only fail to select the more critical instruction when two in-

structions have very similar likelihood of criticalities. Using proba-

bilistic counter updates [21], we have implemented a predictor that

stratifies these 16 levels using just 4 bits of storage, less space than

the 6-bit counters used by Fields et al.

With the LoC predictor in place, implementing criticality-based

selective stalling is quite straightforward. As previously noted, we

use a 30% LoC threshold to choose stalling over load-balancing.

The proactive load-balancing policy is the most challenging to

implement in a fully dynamic steering mechanism. Briefly, our im-

plementation works as follows. To decide which consumers should

be load-balanced, we track the most critical consumer of each regis-

ter at steering time. When a consumer retires, we compare its LoC

with that of the most critical consumer thus recorded; if the value

is lower, we tag the consumer as a candidate for load-balancing.

On top of this, we generally steer only one consumer to the same

cluster as a given producer. This is accomplished by tagging the

producer when it has been followed, so that it will be ignored by

future consumers. We override this single consumer policy when a

particularly critical consumer is encountered — we refuse to load-

balance an instruction if its LoC is greater than 5% and it is at least

half as critical as the producer (suggesting that it is the most critical

consumer). While we do not believe this constitutes a reasonable

implementation, it is one that does not require any oracular knowl-

edge, suggesting that a realistic implementation exists.

Figure 14 demonstrates the benefit of instituting these policies

in our simulated clustered machines. The LoC-based scheduling is

clearly advantageous — for all benchmarks and all configurations

it provides a speedup relative to scheduling based on binary criti-

cality. On average, it halves the execution time lost to contention-

related stalls and, in some benchmarks (e.g., gap, gcc, vortex),

it indirectly reduces the number of forwarding stalls substantially.

In contrast, the stall-over-steer policy is not universally bene-

ficial, but it provides a substantial benefit to gap, gzip, perl,

and vpr, which are some of the programs that previously saw the

biggest penalties from clustering. Much of the 20% speedup this

policy achieves in gzip on the 8-cluster machine occurs in long

stretches of the execution where only 3 clusters are used. This con-

firms our earlier observation that cluster utilization is not a metric

to be optimized. The negative impact on crafty and vortex

is small, but it suggests that there is potential to further tune this

policy. In general, stall-over-steer leads to a substantial reduction

in the critical forwarding latency, but it occasionally aggravates the

number of contention-related stalls. This occurs when non-critical

instructions that are assigned to the “critical cluster” are delayed

too long, a problem that is mitigated by proactive load-balancing.

As implemented, our proactive load-balancing policy only ben-

efits our 8-cluster machine; the other configurations have multiple-

issue capabilities at each cluster, so they are less sensitive to load

imbalance. This policy improves performance by eliminating con-

10

tention stalls from near critical paths, reducing both the number of

critical contention stalls and the frequency at which near-critical

paths are made critical. However, it offers little benefit to programs

like gzip, twolf and vpr. We believe this is related to the fact

that both of these programs have dataflow hammocks on the crit-

ical path, as seen in Figure 7. In such cases, it is often better to

execute on a single cluster because of the latency of inter-cluster

communication.

Overall, our three policies are sufficient to bring all cluster con-

figurations to within 5% of the performance attained by the list

scheduler used in the idealized study of Section 2.2. The obvious

question then arises as to what prevents us from removing the re-

maining 5%. Since we did not attempt to explore the design spaces

opened up by each of our policies, there is almost certainly room

for improvement in the performance we get from them. However,

this is not likely to account for all of the remaining performance

loss. We believe that the bulk of the 5% loss results from an ineffi-

cient distribution of ready instructions across the clusters. Although

proactive load-balancing pushes subsequent consumers to different

clusters, to achieve optimal load balance, these instructions must be

assigned to a cluster that does not already have (and will not soon

have) ready instructions. In other words, choosing the least-full

cluster in these circumstances is not always appropriate.

The problem is most challenging when the program code ex-

hibits ILP equal to the machine’s width. Figure 15 shows how

effective our policies are at extracting all of the available ILP on

the 8x1w configuration. When the available ILP is exactly 8, a

clustered machine needs to have distributed one ready instruction

to each of its clusters. This is particularly challenging because, in

the presence of non-unit latency instructions, it implies the need to

assign more than one dataflow chain to a cluster, each with ready in-

structions on interleaving cycles. Achieving such a fine-tuned load

balance seems to require tracking exactly when and where each in-

struction will be ready. This is exactly what our list scheduler does

— it makes its cluster assignment decisions based on a global view

of all in-flight instructions. In the clustered machines we study,

steering is decoupled from scheduling, so cluster assignments must

be made in the absence of precise information.

However, the problem becomes much easier when available ILP

is either very high or very low. For example, with an available ILP

of 24, we are likely to have 3 ready instructions per cluster on av-

erage, making it unlikely that there will be cycles when we do not

0 5 10 15 20

available ILP

0

2

4

6

8

ac
h
ie

v
ed

 I
L

P

Figure 15. A clustered machine has trouble matching a monolithic ma-

chine when code has ILP close to the total issue width. Data shown is an

average over all SPEC Integer benchmarks for the 8x1w machine. Available

ILP is computed on a cycle-by-cycle basis by counting the number of ready

instructions across all clusters. The achieved ILP is the average number of

instructions executed on cycles with a given available ILP.

achieve full utilization of the machine. When available ILP is low,

there are few dataflow chains, so each can be assigned to its own

cluster, guaranteeing that all ready instructions will be executed ev-

ery cycle.

8 Conclusion

Clustered machines are an attractive design option because they ad-

dress the power-, clock- and complexity-related problems that hin-

der scaling of monolithic designs. However, all studies to date show

a significant IPC penalty incurred by clustered designs. Motivated

by the question as to whether those penalties are inherent or merely

a result of sub-optimal use of the hardware, we conducted an ideal-

ized study in which we list-schedule instruction traces for various

clustered machine configurations. In terms of inherent performance

capabilities, our findings are positive: for a family of clustered ar-

chitectures and a variety of inter-cluster forwarding latencies, there

exist instruction schedules that yield performance remarkably close

to that of an equivalent monolithic machine. This result indicates

that, in the integer applications we examined, critical dataflow ex-

hibits very modest ILP; equally, non-critical dataflow is very tol-

erant of inter-cluster communication penalties and intra-cluster re-

source contention. In short, if critical dataflow can be accurately

identified and appropriately co-located, then a clustered architec-

ture imposes negligible IPC penalty.

With this result in place, we used critical-path analysis to ex-

amine a state of the art policy for steering and scheduling, aim-

ing to discover the main causes that underly the observed perfor-

mance penalties. We found two main culprits: contention among

known-critical instructions and load-balancing of critical instruc-

tions. These findings motivated the development of policies for mit-

igating the performance-degrading effects. Regarding contention

among critical instructions, we found that a binary notion of crit-

icality is not sufficient for correctly prioritizing among critical in-

structions. We introduced the likelihood of criticality (LoC) met-

ric to address this problem, and showed that a scheduler equipped

with LoC information can, on average, halve the time lost to con-

tention stalls. The load-balancing problem poses a more difficult

challenge. When programs are in execute-critical regions that are

clearly execute-critical, we showed that a stall-over-steer policy can

eliminate forwarding delay from the critical dependence chain. Us-

ing the LoC metric as a means for driving the decision to stall rather

than steer, we showed that performance in some benchmarks can be

improved by as much as 20%. We also observed that a stall-over-

steer policy effects a better distribution of ready instructions, but

found that its potential in this respect is limited by fetch order con-

straints and codes in which a clearly-critical dependence chain is

not discernible. To tackle that problem, we proposed a proactive

load-balancing scheme that pushes non-critical consumers away

from their producers, leaving room for the more critical consumers.

Together, these policies bring performance of all of the clustered

configurations we studied to within 5% of our idealized list schedul-

ing. We believe the remaining performance gap results from the fact

that scheduling in a dynamic clustered machine is distributed and

decoupled from steering. In the absence of a global and accurate

view of instruction readiness, it is difficult for steering to optimally

distribute the ready instructions among the clusters. This problem

is most pronounced on a machine with 1-wide clusters when the

11

code it executes has ILP close to its aggregate execute bandwidth.

From an IPC point of view, therefore, a machine with 1-wide clus-

ters is less appealing than the wider configurations we examined.

Since 2-wide clusters are only moderately more complex, they are

perhaps the more complexity-effective design point.

We believe the policies we have developed in this work move

us one step closer to an effective dynamically-scheduled clustered

machine. Nevertheless, a number of serious implementation chal-

lenges remain. For example, dynamic profiling of the critical path

requires that a token-passing predictor be built into the pipeline;

implementing the LoC scheduling policy potentially complicates

the dynamic scheduler; and dynamically identifying which instruc-

tions should be proactively load-balanced will not be easy. In

fact, even building a circuit that can do dependence-based steer-

ing of 8 instructions per cycle is not likely to be easy — it suf-

fers the same complexity-related problems incurred by register re-

naming logic (namely, intra-cycle dependences need to be taken

into account). Given these hurdles, we are currently investigating

hardware-software hybrid techniques that might enable a feasible

implementation.

Acknowledgments

This research was supported in part by NSF CCF-0429561, NSF

CCR-0311340, NSF CAREER award CCR-03047260, and a gift

from the Intel corporation. We thank Sarita Adve, Vikram Adve,

Krishnan Kailas, Andrew Lenharth, Sanjay Patel, and the anony-

mous reviewers for feedback on this work.

References

[1] A. Aletà, J. M. Codina, A. González, and D. Kaeli. Instruction Repli-

cation for Clustered Microarchitectures. In Proceedings of the 36th

Annual IEEE/ACM International Symposium on Microarchitecture,

Dec. 2003.

[2] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi. Dynam-

ically Managing the Communication-Parallelism Trade-off in Future

Clustered Processors. In Proceedings of the 30th Annual International

Symposium on Computer Architecture, June 2003.

[3] A. Baniasadi and A. Moshovos. Instruction Distribution Heuristics

for Quad-Cluster, Dynamically-Scheduled, Superscalar Processors. In

Proceedings of the 33rd Annual IEEE/ACM International Symposium

on Microarchitecture, pages 337–347, Dec. 2000.

[4] R. Bhargava and L. K. John. Improving Dynamic Cluster Assignment

for Clustered Trace Cache Processors. In Proceedings of the 30th An-

nual International Symposium on Computer Architecture, June 2003.

[5] R. Canal, J. M. Parcerisa, and A. González. Dynamic Cluster Assign-

ment Mechanisms. In Proceedings of the Sixth IEEE Symposium on

High-Performance Computer Architecture, Jan. 2000.

[6] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. PhD thesis,

Department of Computer Science, Yale University, 1985.

[7] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic. The Multicluster

Architecture: Reducing Cycle Time through Partitioning. In Pro-

ceedings of the 30th Annual IEEE/ACM International Symposium on

Microarchitecture, Dec. 1997.

[8] B. Fields, R. Bodik, M. Hill, and C. J. Newburn. Using Interac-

tion Cost for Microarchitectural Bottleneck Analysis. In Proceedings

of the 36th Annual IEEE/ACM International Symposium on Micro-

architecture, Dec. 2003.

[9] B. Fields, R. Bodik, and M. D. Hill. Slack: Maximizing Performance

Under Technological Constraints. In Proceedings of the 29th An-

nual International Symposium on Computer Architecture, pages 47–

58, May 2002.

[10] B. A. Fields, S. Rubin, and R. Bodik. Focusing Processor Policies

via Critical-Path Prediction. In Proceedings of the 28th Annual In-

ternational Symposium on Computer Architecture, pages 74–85, July

2001.

[11] J. González, F. Latorre, and A. González. Cache Organizations for

Clustered Microarchitectures. In WMPI ’04: Proc. 3rd Workshop on

Memory Performance Issues, June 2004.

[12] K. Kailas, A. Agrawala, and K. Ebcioglu. CARS: A New Code Gen-

eration Framework for Clustered ILP Processors. In Proceedings of

the Seventh IEEE Symposium on High-Performance Computer Archi-

tecture, Jan. 2001.

[13] G. A. Kemp and M. Franklin. PEWs: A Decentralized Dynamic

Scheduler for ILP Processing. In Proceedings of the International

Conference on Parallel Processing, pages 239–246, Aug. 1996.

[14] R. E. Kessler. The Alpha 21264 Microprocessor. IEEE Micro,

19(2):24–36, March/April 1999.

[15] H.-S. Kim and J. E. Smith. An Instruction Set and Microarchitecture

for Instruction Level Distributed Processing. In ISCA, Alaska, May

2002.

[16] P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein, R. Nix, J. O.

Donnell, and J. Ruttenberg. The Multiflow Trace Scheduling Com-

piler. Journal of Supercomputing, 7(1-2):51–142, May 1993.

[17] S. Narayanasamy, H. Wang, P. Wang, J. Shen, and B. Calder. A De-

pendency Chain Clustered Microarchitecture. In Proceedings of the

28th Annual International Symposium on Computer Architecture, July

2001.

[18] E. Ozer, S. Banerjia, and T. Conte. Unified Assign and Schedule:

A New Approach to Scheduling for Clustered Register File Microar-

chitectures. In 31th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO-31), Nov 1998.

[19] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-Effective Su-

perscalar Processors. In Proceedings of the 24th Annual International

Symposium on Computer Architecture, pages 206–218, June 1997.

[20] S. Palacharla and J. Smith. Decoupling Integer Execution in Super-

scalar Processors. In Proceedings of the 28th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, Nov. 1995.

[21] N. Riley and C. Zilles. Probabilistic Counter Updates for Predictor

Hysteresis and Bias. Computer Architecture Letters, August 2005.

[22] J. E. Smith. Decoupled Access/Execute Computer Architecture. In

Proceedings of the 9th Annual Symposium on Computer Architecture,

pages 112–119, Apr. 1982.

[23] E. Tune, D. Liang, D. Tullsen, and B. Calder. Dynamic Prediction of

Critical Path Instructions. In Proceedings of the Seventh IEEE Sym-

posium on High-Performance Computer Architecture, Jan. 2001.

12

