Identifying Important and Difficult Concepts in
Introductory Computing Courses using a Delphi Process

Ken Goldmany+, Paul Grosst, Cinda Heereni, Geoffrey Hermant,
Lisa Kaczmarczyks+, Michael C. Louit, and Craig Zillest

tkjg,grosspa@cse.wustl.edu, Washington University in St. Louis
tc-heeren,glherman,loui,zilles@uiuc.edu, University of lllinois at Urbana-Champaign
xlisak@ucsd.edu, University of California-San Diego

ABSTRACT

A Delphi process is a structured multi-step process that
uses a group of experts to achieve a consensus opinion. We
present the results of three Delphi processes to identify top-
ics that are important and difficult in each of three intro-
ductory computing subjects: discrete math, programming
fundamentals, and logic design. The topic rankings can be
used to guide both the coverage of standardized tests of stu-
dent learning (i.e., concept inventories) and can be used by
instructors to identify what topics merit emphasis.

Categories and Subject Descriptors: K.3.2 [Computer
and Information Science Education]: Computer Science Ed-
ucation

General Terms: Human Factors.

Keywords: Curriculum, Concept Inventory, Delphi, Dis-
crete Math, Programming Fundamentals, Logic Design

1. INTRODUCTION

Developing tools for assessing student learning in comput-
ing is known to be a difficult task with a potentially large
payoff [9]. Tool development faces the dual challenge of gen-
erality and reliability. If we can, however, develop learning
assessment tools that are broadly applicable and enable ed-
ucators to easily and reliably compare different instructional
approaches, we can develop best practices for teaching com-
puting. Furthermore, such assessment tools can motivate
curricular improvements, as they permit educators to com-
pare the effectiveness of their current approaches with these
best practices.

The potential for good assessment tools is clear from the
impact of the Force Concept Inventory (FCI), a multiple-
choice test designed so that students must choose between
the Newtonian conception of force and common misconcep-
tions. In the last two decades, the teaching of introductory
college physics has undergone a revolution that has been
both motivated and guided by the FCI [10]. The FCI demon-
strated that even students who had excelled on conventional
examinations failed to answer the simple, conceptual ques-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCSE’08, March 12-15, 2008, Portland, Oregon, USA.

Copyright 2008 ACM 978-1-59593-947-0/08/0003 ...$5.00.

tions on the FCI correctly. This failure exposed fundamental
flaws in instruction. The results of administrations of the
FCI to thousands of students led physics instructors to de-
velop and adopt “interactive engagement” pedagogies [7].
Due to the impact of the FCI, “concept inventory” (CI)
tests are being actively developed for a number of science
and engineering fields (e.g., [4]).

Unfortunately, there remains a notable lack of rigorous
assessment tools in computing. As a result, there is cur-
rently no way to rigorously compare the impact on student
learning of the broad range of creative practices developed
by the computing education community.

‘We hope to help replicate the physics education revolution
in computing education through the development of CIs for
computing courses. We are currently working toward Cls
in three introductory subjects: programming fundamentals
(CS1), discrete mathematics, and logic design. We are fol-
lowing the same four-step process used by other developers
of CIs [4].

1. Setting the Scope: A CI is typically administered as
both a pre-test at the beginning of a course and a post-test
at the end, to measure the “gain” resulting from instruction,
on a select subgroup of representative topics. It is important
to emphasize that a CI is not intended to be a comprehen-
sive test of all significant course topics. As a result, the
scope of the test must be determined carefully to include
an indicative subset of course topics that are important and
that distinguish students who have a strong conceptual un-
derstanding from those who do not.

2. Identifying Misconceptions: Students should be
interviewed to determine why they fail to understand key
topics correctly. These interviews should identify students’
misconceptions about these topics. Previous work suggests
that only students can provide reliable information about
their misconceptions [3].

3. Develop Questions: Using data from Step 2, CI de-
velopers construct multiple-choice questions whose incorrect
answers correspond to students’ common misconceptions.

4. Validation: The CI should be validated through trial
administrations. In addition, the reliability of the CI should
be analyzed through statistical methods.

In this paper, we report our progress on Step 1 above,
for each of the three computing subjects we are focusing on.
Because we seek to develop Cls that are widely applicable,
we sought the opinions of a diverse group of experts using
a Delphi process (described in Section 2), an approach used
to develop some previous Cls [6, 13].

We present our results in Section 3. For each of our three
subjects, our experts identified between 30 and 50 key top-
ics. They rated the importance and difficulty of each topic
for an introductory course on the subject, with consensus
increasing (as demonstrated by decreasing standard devia-
tions for almost all topics) throughout the multi-step Delphi
process. From these results, we were able to identify roughly
ten topics per subject that achieved consensus rankings for
high importance and difficulty.

2. THE DELPHI PROCESS

A Delphi process is a structured process for collecting in-
formation and reaching consensus in a group of experts [2].
The process recognizes that expert judgment is necessary to
draw conclusions in the absence of full scientific knowledge.
The method avoids relying on the opinion of a single expert
or merely averaging the opinions of multiple experts. In-
stead, experts share observations (so that each can make an
more informed decision) but in a structured way, to prevent
a few panelists from having excessive influence as can occur
in round-table discussions [11]. In addition, experts remain
anonymous during the process, so that they are influenced
by the logic of the arguments rather than the reputations of
other experts.

For each of the three computing subjects, we used the
Delphi process to identify key topics in introductory courses
that are both important and difficult for students to learn.
Specifically, we sought a set of key topics such that if a
student fails to demonstrate a conceptual understanding of
these topics, then we could be confident that the student had
not mastered the course content. These key topics would
define the scope of each CI.

Because the quality of the Delphi process depends on the
experts, we selected three panels of experts who had not
only taught the material frequently, but who had published
textbooks or pedagogical articles on these subjects. Within
each panel, we strove to achieve diversity in race, gender,
geography, and type of institution (community college, four-
year college, research university). Clayton [1] recommends
a panel size of 15 to 30 experts. Our panel sizes were 21
for discrete math, 20 for programming fundamentals, and
20 for digital logic. Our Delphi process had four phases.

Phase 1. Concept Identification: We asked each expert
to list 10 to 15 concepts that they considered both impor-
tant and difficult in a first course in their subject. For each
course, the experts’ responses were coded independently by
two or three of us, and we constructed topic lists to include
all concepts identified by more than one expert. The recon-
ciled lists of topics were used for subsequent phases.

Phase 2. Initial Rating: The experts were asked to rate
each topic on a scale from 1 to 10 on each of three metrics:
importance, difficulty, and expected mastery (the degree to
which a student would be expected to master the topic in an
introductory course). The third metric was included because
some concepts identified in Phase 1 might be introduced
only superficially in a first course on the subject but would
be treated in more depth in later courses; these concepts
would probably be inappropriate to include in a concept
inventory. We found that ezpected mastery was strongly
correlated (r > 0.81) with importance for all three subjects.
Thus we dropped the expected mastery metric from Phase 3
and Phase 4.

Phase 3. Negotiation: The averages and inner quartiles
ranges (middle 50% of responses) of the Phase 2 ratings were
calculated. We provided this information to the experts, and
we asked them to rate each topic on the importance and
difficulty metrics again. In addition, when experts chose
a Phase 3 rating outside the Phase 2 inner quartiles range,
they were asked to provide a convincing justification for why
the Phase 2 range was not appropriate.

Phase 4. Final Rating: In Phase 4, we again asked the
experts to rate the importance and difficulty of each topic,
in light of the average ratings, inner quartiles ranges, and
anonymized justifications from Phase 3. We used the ratings
from Phase 4 to produce the final ratings.

3. RESULTS

In this section, we report on the mechanics of the Delphi
process, which were similar for each of the Delphi processes.
Then, in Sections 3.1, 3.2, and 3.3, we present the results
of and our observations about the three Delphi processes
we conducted: programming fundamentals, discrete math,
and logic design, respectively. Due to space constraints, we
present only a summary of the complete results available in
our technical report [5].

We found it rather straight-forward to reconcile the sug-
gested topics into a master lists. As an example, the topic
suggestions “Binary numbers, 2’s complement”, “Two’s com-
plement representation”, “Unsigned vs. Signed numbers”,
“The relationship between representation (pattern) and mean-
ing (value)”, and “Signed 2’s complement representation”
were synthesized into the topic

“Number Representations: Understanding the re-
lationship between representation (pattern) and
meaning (value) (e.g., two’s complement, signed
vs. unsigned, etc.),”

which we abbreviate here, for space reasons, as Number Rep-
resentations. Notably absent from the assembled topic lists
in all three subjects were any topics our experts ranked as
both “non-important” and “non-difficult,” as can be seen
graphically for the programming fundamentals topics in Fig-
ure 1.

We found that the Delphi process was, in fact, useful for
moving toward a consensus. The standard deviations of the
responses decreased for almost all topics during each step of
the Delphi process. Specifically, 62 out of 64 (programming
fundamentals), 71 out of 74 (discrete math), and 90 out of 92
(logic design) standard deviations for the ratings decreased
from Phase 2 to Phase 4. Typically, this consensus was
achieved when the experts adjusted their rankings modestly.
Most (88%) ratings changed by 2 points or less between step
2 and step 4 (no change: 32%, change by 1: 38%, 2: 19%,
3: ™%, 4: 3%, 5+: 2%).

From the importance and difficulty ratings, we computed
a single metric with which to rank the topics. We ended
computing an overall ranking using the distance for each
topic from the maximum ratings (importance 10, difficulty
10), the L? norm, but found both the sum and product of
the two metrics to provide an almost identical ranking. In
the tables that follow, we highlight (using boldface) the top
N topics by this ranking, selecting an N near 10 such that
there is a clear separation between the two groups of topics.

Interestingly, we found the ranking computed during Phase
2 of the Delphi process to quite accurately predict the top

10
il (79 PROC
’ S o
-
) v
3 4
L s Co
E Vi ops
E PA1 SVS.
c ¢ * v = o
s +
[] TYP R BOOL 0
= L o0cbyfco]
< CONI T
z 6 AR3
AR:
=
o
% AR
5
o7
4 0
4 5 6 7 8 9 10
Phase 4 Mean Importance

Figure 1: Programming fundamentals topics plotted
to show the selection of the highest ranked. Topics
were ranked by their distance from the point (10, 10); the
quarter circle shows the separation between the top 11 topics
and the rest.

ranked topics in later phases. For example, in logic design,
10 of the top 11 ranked topics were the same for both Phase
2 and Phase 4. While the average importance and diffi-
culty ratings changed significantly in some cases — 0.5 to
1.0 point shifts are not uncommon — these shifts occurred
predominantly in the topics that made up the middle of the
rankings.

3.1 Programming Fundamentals (CS1) Results

Finding consensus on the most important and difficult
concepts for a CS1 course is inherently challenging because

of the diversity of approaches in languages (e.g., Java, Python,

Scheme), pedagogical paradigms (e.g., objects-first, objects-
late), and programming tools used. These factors influence
the perceptions of topics that are important and difficult.

In soliciting volunteers, we contacted experts with a vari-
ety of backgrounds and experience, placing no emphasis on
a specific language, paradigm, or environment. In Phase
1, experts were asked to identify the languages they are
teaching (and have taught with) and the development en-
vironments they use. The majority cited object-oriented
languages, which is reflected in the strong representation of
procedural and object-oriented topics in Figure 2.

Indicated in bold in Figure 2 are the top 11 topics us-
ing the ranking described in Section 3. Despite the object-
oriented influence, only one of these 11 topics is exclusively
related to object-oriented paradigms or languages. This
result implies that a programming fundamentals inventory
based on the other 10 topics could be broadly applicable.

Topics with a weak consensus (those with a large standard
deviation, 1.5 or greater) for importance are of two types:
outlier or controversial. Outlier topics (e.g., TYP, PVR,
REC, see Figure 2) have a strong consensus with most ex-
perts but include one or two strongly dissenting rankings.
Language differences is a common reason given for dissent,
when one is given.

Controversial topics such as inheritance (INH) and mem-
ory models (MMR) have agreement around two ratings rather
than a single rating. This controversy can be seen in the fol-
lowing expert explanations for inheritance:

ID Topic
Procedural Programming

Importance| Difficult

PA1 [1. Call by Ref. vs Call by Value 70(25) | 74(1.2)
PA2 |2. Formal vs. Actual Parameters 8.6(1.2) | 5.7(1.7)
PA3 |3. Parameter scope, use in design 9.1(0.9) | 7.5(1.0)
PROC |4. Procedure design 9.8 (0.4) [9.1(0.8)
CF 5. Tracing Control Flow thru program execution 9 8(0.4) [7.0(0.6)
TYP |6. Choosing/Reasoning about data types 2(1.5) | 6.6(0.5)
BOOL |7. Construct/evaluate Boolean expressions 9 5(0.7) | 7.1(0.8)
COND|8. Writing expressions for conditionals 9.5(0.5) | 6.7 (0.6)
SVS 9. Syntax vs. Semantics 8 6(0.7) [7.5(0.5)
OoP 10. Operator Precedence 1(1.5) | 4.4(0.5)
AS 11. Assignment Statements 5(1.2) | 4.4(0.5)
SCO |12. Issues of Scope, local vs. global 9 4(0.7) | 8.0(0.0)

Object Oriented Programming

13. Difference between Classes and Objects 10.0 (0.0) | 6.9(1.4)

SCDE 14. Scope design (e.g., public vs private fields) 9.4(0.7) | 6.6(0.5)
INH |[15. Inheritance 7.6 (1.7) | 9.5(0.5)
POLY (16. Polymorphism 7.1(1.4) | 89(0.8)
STAM (17. Static fields and methods 5.7(1.3) | 7.3(0.6)
PVR |18. Primitive vs Reference variables 8.5(2.4) | 7.0(0.8)

Algorithm Design

APR |19. Abstraction/Pattern recognition and use 8.8 (0.4) [9.0(0.4)
IT1 20. Tracing nested loop execution correctly 9.5(0.5) | 6.6(0.7)
IT2 21. Understanding loop variable scope 8.7 (2.0) | 4.3(0.9)
REC |22. Recursion, tracing and designing 7.8(2.4) | 9.2(0.9)
AR1 |23. Identifying off by one index errors 8.9(0.8) | 5.3(0.5)
AR2 |24. Reference to array vs array element 84 (1.4) | 5.7(0.7)
AR3 [25. Declaring and manipulating arrays 9.0(1.4) | 55(0.5)
MMR (26. Memory model, references , pointers 7.5(1.7) | 8.9(0.7)

Program Design

DPS1 |27. Functional decomposition, modularization | 9.3 (0.6) | 7.9 (0.8)
DPS2 |28. Conceptualize problems, design solutions 9.5(0.5) | 8.5(0.5)
DEH [29. Debugging, Exception Handling 9.0 (0.0) | 8.6 (0.5)
VI 30. Interface vs Implementation 8.1(0.8) | 7.5(0.5)
IAC |31. Desiging Interfaces, Abstract Classes 5.0(1.1) | 8.6(0.7)
DT 32. Designing Tests 9.3(0.8) | 8.4(0.8)

Figure 2: Programming Fundamentals (CS1) topics
rated for importance and difficulty. Data reported as:
average (standard deviation,).

“Though the goal of good OO design is some-
thing that is quite difficult, in the context of CS1,
we focus more on understanding more basic ex-
amples of inheritance.” IMP = 6, DIFF = 6

“Inheritance & polymorphism are the fundamen-
tal concepts of OO design that make it differ-
ent from procedural programming.” IMP = 10,
DIFF = 10

Many other comments related to language differences as
a factor. For example, one expert noted that the primitive
vs. reference variables (PVR) topic was not meaningful for
Python, where “there are no value variables.” Given such
language and paradigm differences, we are discussing the
merits of creating topic-specific sub-inventories, as comple-
ments to a “universal” CI.

3.2 Discrete Math Results

Our Delphi results, shown in Figure 3, comport with the
organization and coverage of core Discrete Structures con-
cepts in the ACM Computing Curricula 2001 (CC2001) [14].
In general, the topics obtained in Phase 1 partitioned into
the areas labeled “core topics DS1-DS6” in CC2001. In ad-
dition, our experts suggested topics related to algorithms.
These algorithmic topics are absent from the Discrete Struc-

tures portion of CC2001 and from the subsequent SIGCSE
Discrete Mathematics Report [8].

After Phase 4, nine of the ten top ranked topics (using the
L? norm described in Section 3) are included in the CC2001
Discrete Structures core. The tenth, “order of growth,” is a
CC 2001 core Algorithms topic, but appears to be frequently
covered in discrete math courses — at least those taught for
computing students — in preparation for other introductory
computing courses.

The experts agreed on the importance and difficulty of
reasoning skills in a discrete math course: they rated all four
topics in the Proof Techniques category among the top ten.
In particular, “proof by induction” was rated as the most
important and the third most difficult of the 37 topics. Two
closely related topics “recursive definitions” and “recurrence
relations” were also ranked among the top 10 ranked topics.

Topics in the Algorithms and Discrete Probability cate-
gories had the least consensus (largest standard deviation)
in their importance ratings. The inclusion of these topics de-
pends on the context of the discrete math course in the local
computer science curriculum: these topics may be assigned
instead to other courses in the curriculum. All topics in Al-
gorithms received high ratings on difficulty but low ratings
on importance for a first course in discrete math.

3.3 Logic Design Results

The data collected via the logic design Delphi process can
be found in Figure 4. For the most part, we found that im-
portance rankings had higher standard deviations — largely
attributable to differences in course coverage — than the dif-
ficulty rankings. A notable exception was the high standard
deviation for the difficulty of “Number Representations,”
where some faculty asserted that their students knew this
material coming into the class, whereas others found their
students having some trouble. This result is perhaps at-
tributable to differences in student populations between in-
stitutions.

When a significant change in the mean occurred between
Phases 3 and 4 (as identified below), we could attribute it
to expert comments from one of the following five classes:

No longer important: Some topics in many logic design
courses were introduced when the dominant means of build-
ing digital systems was composing medium-scale integration
(MSI) chips. Topics specific to that design style (8, 9, 10,
14, 17, 23) were argued as no longer important for targeting
modern implementations (VLSI or FPGA).

Not important in a first course: The rated importance
for topics 6, 10, 16, 22, 28, 36, 41-43, 45, 46 decreased as (in
some cases multiple) experts argued that these topics were
not appropriate for a first course, in spite of their overall
importance.

Important for future learning: Two topics (11, 32) in-
creased notably in importance when experts argued that
they were important for developing thinking and in prepara-
tion for “the next level of digital logic design,” respectively.

Asserted to be hard: Consensus difficulty levels increased
for a number of topics (6, 7, 11) when experts asserted they
were subtle or challenging for students.

Solvable by rote: An expert argued that topics 12 and 24
were not difficult, as a rote method for solving them could
be taught.

Topic Importance | Difficult

i

1. Conditional statements 9.5(0.6) 5.3(1.1)
2. Boolean algebra, prop logic 8.8(0.4) 5.7(0.7)
3. English into predicate logic 8.6(1.1) 7.3(0.9)
4. Quantifiers and predicate logic 8.3(0.8) 7.3(0.8)

Proof Techniques

5. Recognize valid/invalid proofs 8.5(1.1) 8.1(1.1)
6. Direct proof 8.8(1.0) 7.7(1.0)
7. Proof by contradiction 8.5(1.1) 8.2(0.9)
8. Proof by induction 9.7(0.5) 8.5(0.8)

9. Set specification and operations 8.2(0.9) 3.9(1.1)
10. Proof of set equality 7.1(0.6) 5.5(1.4)
11. Countable/uncountable infinities 4.7(1.8) 9.0(0.8)
12. Definition 7.4(1.1) 4.6(0.7)
13. Properties 7.5(1.1) 5.7(0.9)
14. Equivalence relations 7.9(1.2) 6.0(1.3)
15. Equivalence classes 8.1(0.7) 6.6(1.1)

16. Composition and inverse 8.2(0.9) 5.1(1.0)
17. Injections and surjections 7.5(1.2) 6.4(1.1)
18. Order of growth 8.1(2.0) 8.3(1.1)

19. Recursive definitions 8.7(1.3) 8.0(1.1)
20. Recursive algorithms 6.3(2.7) 8.1(0.8)
21. Recurrence relations 8.0(1.4) 7.7(1.0)
22. Solving recurrences 6.4(2.0) 6.7(1.2)

23. Algorithm correctness 4.5(2.6) 8.6(1.0)
24. Algorithm analysis 5.5(2.2) 7.5(1.1)
25. Decidability, Halting Problem 3.3(2.3) 8.6(1.1)

26. Basic enumeration techniques 9.1(0.9) 6.4(1.4)
27. Permutations/combinations 8.7(1.0) 7.1(1.3)
28. Inclusion-exclusion 6.4(1.6) 6.1(1.9)
29. Combinatorial identities 6.4(1.4) 6.5(1.4)
30. Pigeonhole principle 5.9(1.9) 6.1(1.7)
31. Combinatorial proof 5.0(1.9) 7.9(1.3)

Discrete Probability

32. Conjunction, complement 5.9(2.5) 5.6(1.4)
33. Conditional probability 4.9(1.9) 7.5(0.7)
34. Expected value 5.6(2.4) 6.9(0.9)

Other Topics

35. Mod, quotient, remainder 8.0(2.1) 3.1(1.6)
36. Fundamental graph definitions 8.7(0.5) 3.5(1.1)
37. Modeling by graphs and trees 7.7(1.7) 6.6(0.9)

Figure 3: Discrete math topics rated for importance
and difficulty. Data reported as: average (standard devi-
ation).

4. CONCLUSIONS AND IMPLICATIONS

We believe that a revolution in the way that computing is
taught will not occur until educators can clearly see the con-
crete benefits in student learning that new pedagogies offer.
To build learning assessment tools that are sufficiently gen-
eral to apply to the broad range of curricula and institutions
in which computing is taught, it is necessary to identify a
representative set of topics for each course that are both
undeniably important and sufficiently difficult that the im-
pact of pedagogical improvement can be measured. This
paper documents an effort to identify such a set of topics
through a Delphi process, where a consensus is drawn from
a collection of experts through a structured, multi-step pro-
cess. From this process, we identified roughly ten topics for
each of programming fundamentals (CS1), discrete math,
and logic design. These results provide guidance of where
we (and others) should focus efforts for developing learning

Topic Importance| Difficult
Number Representations

1. Number Representations 8.6(1.0)
2. Number System Conversions 7.6(1.1)
3. Binary Arithmetic 8.4(1.0)
4. Overflow 7.9(1.3) .8(1.
5. Boolean Algebra Manipulation 7.0(1.1) 7.3(0.8)
6. Complementation and Duality 6.4(1.4) 6.6(0.9)
7. Verbal Spec. to Boolean Expr. 9.5(0.6) 7.4(1.0)
8. Incompletely Specified F'ns 7.5(1.3) 5.4(0.9)
9. Finding Minimal SOP 7.1(1.5) 5.1(0.6)
10. Finding Minimal POS 5.7(1.9) 5.9(1.0)
11. Multilevel Synthesis 7.3(1.3) 7.9(0.8)
12. Hazards 4.8(1.7) 6.9(1.6)
13. Functionality of MSI 9.6(0.8) 5.9(0.8)
14. Application of MSI 6.4(2.4) 6.1(1.1)
15. Hierarchical Design 9.5(0.6) 6.6(0.9)
16. Carry Lookahead Adder 5.8(1.7) 7.3(0.6)
Sequential Logic
17. Latch/Flip-Flop Difference 8.1(1.9) 6.4(0.6)
18. Edge-Triggered Flip-Flops 6.8(2.1) 6.7(0.9)
19. Asynch. Flip-Flop Inputs 7.3(1.5) 6.3(0.9)
20. State Transitions 9.8(0.4) 7.5(0.7)
21. Verb. Spec. to State Diagram 9.8(0.4) 8.3(0.7)
22. Mealy/Moore Difference 6.8(1.7) 6.1(0.9)
23. State Machine Minimization 5.1(1.8) 6.9(1.0)
24. Analyzing Sequential Circuit 8.5(1.5) 5.7(1.5)
25. Excitation Tab. to Seq. Circuit 7.9(2.1) 6.1(1.1)
26. Seq. Circuit and State Diagram 8.9(0.9) 6.6(0.7)
Correspondence
27. Relate Timing Diag/State Mach. 9.4(0.7) 8.2(0.9)
28. Race Conditions in Seq. Circuits 4.9(2.0) 8.4(0.6)
29. Counters 6.6(1.8) 6.3(1.1)
30. Shift Registers 7.8(1.0) 5.9(1.2)
31. Algorithmic State Mach. Charts 6.3(2.0) 6.6(0.8)
32. Converting Algorithms to RTL 8.5(1.0) 8.0(0.6)
33. Designing Datapath Control 8.3(1.8) 7.8(0.8)
34. Memory Organization 6.8(1.6) 6.3(1.0)
Design Skills and Tools
35. Using CAD Tools 8.4(1.6) 6.9(1.0)
36. HDL vs. Programming Lang. 7.2(2.4) 6.9(1.1)
37. Programmable Logic 7.4(1.6) 6.1(0.8)
38. Modular Design 8.9(1.6) 7.2(0.6)
39. Debug, Test, Troubleshoot 8.4(2.2) 8.6(0.6)
Digital Electronics
40. Active High vs. Active Low 7.0(1.9) 5.7(0.9)
41. Fan-in, Fan-out 6.7(1.6) 4.8(1.2)
42. High-Impedance Outputs 6.8(1.8) 5.7(0.8)
43. DC and AC loading 5.8(2.2) 6.5(0.8)
44. Propagation Delay 7.7(1.2) 5.8(1.0)
45. Setup and Hold Time 7.4(1.9) 6.5(0.8)
46. Clock Distribution 6.6(2.0) 6.1(1.1)

Figure 4: Logic design topics rated for importance
and difficulty. Data reported as: average (standard devi-
ation).

assessments and can also be used by educators as guidance
on where to focus instructional effort.

While the consensus importance ratings may be taken at
face value (i.e., faculty are unlikely to use an assessment
tool that focuses on topics they deem as unimportant), the
difficulty ratings should be taken with a grain of salt. If
nothing else can be learned from the force concept inventory,
it showed that many teachers have an incomplete (at best)
understanding of student learning. As such, in the next step
of our concept inventory development, we plan to validate
the difficulty ratings asserted by our experts through stu-

dent interviews and, in so doing, wholly expect that some
topics that our experts ranked as easy will, in fact, be rife
with student misconceptions. As part of this work, we hope
to contribute to the literature of computing misconceptions
where it exists (programming fundamentals, e.g. [12]) and
develop one where there is little prior work (discrete math,
logic design).

S. ACKNOWLEDGMENTS

We thank the experts that participated in the Delphi
processes. This work was supported by the National Sci-
ence Foundation under grants DUE-0618589, DUE-0618598,
DUE-618266, and CAREER CCR-03047260. The opinions,
findings, and conclusions do not necessarily reflect the views
of the National Science Foundation or the authors’ institu-
tions.

6. REFERENCES

[1] M. J. Clayton. Delphi: A Technique to Harness Expert
Opinion for Critical Decision-Making Task in Education.
Educational Psychology, 17:373-386, 1997.

[2] N. Dalkey and O. Helmer. An experimental application of
the delphi method to the use of experts. Management
Science, 9:458—467, 1963.

(3] D. Evans. Personal communication, January 2006.

[4] D. Evans et al. Progress on Concept Inventory Assessment
Tools. In the Thirty-Third ASEE/IEEE Frontiers in
Education, Nov 2003.

[5] K. J. Goldman et al. Identifying Important and Difficult
Concepts in Introductory Computing Courses using a
Delphi Process. Technical Report UITUCDCS-R-2007-2917,
University of Illinois Computer Science Department,
November 2007.

[6] G. L. Gray, D. Evans, P. Cornwell, F. Costanzo, and
B. Self. Toward a Nationwide Dynamics Concept Inventory
Assessment Test. In American Society of Engineering
Education, Annual Conference, June 2003.

(7] R. Hake. Interactive-engagement vs traditional methods: A
six-thousand-student survey of mechanics test data for
introductory physics courses. Am. J. Physics, 66, 1998.

[8] B. Marion and D. Baldwin. Sigcse commitee report: On the
implementation of a discrete mathematics course. Inroads:
ACM SIGCSE Bulletin, 39(2):109-126, 2007.

[9] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,

D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas,

I. Utting, and T. Wilusz. A multi-national,
multi-institutional study of assessment of programming
skills of first-year cs students. In ITiCSE-Working Group
Reports (WGR), pages 125-180, 2001.

[10] J. P. Mestre. Facts and myths about pedagogies of
engagement in science learning. Peer Review, 7(2):24-27,
Winter 2005.

[11] J. Pill. The delphi method: substance, context, a critique
and an annotated bibliography. Socio-Economic Planning
Sciences, 5(1):57-71, 1971.

[12] E. Soloway and J. C. Spohrer. Studying the Novice
Programmer. Lawrence Erlbaum Associates, Inc., Mahwah,
NJ, USA, 1988.

[13] R. Streveler, B. M. Olds, R. L. Miller, and M. A. Nelson.
Using a Delphi study to identify the most difficult concepts
for students to master in thermal and transport science. In
American Society of Engineering Education, Annual
Conference, June 2003.

[14] The Computer Society of the Institute for Electrical and
Electronic Engineers and Association for Computing
Machinery. Computing Curricula 2001, Computer Science
Volume. http://www.sigcse.org/cc2001/index.html.

