
Are We Fair?Quantifying Score Impacts of Computer Science
Exams with RandomizedQuestion Pools

Max Fowler
mfowler5@illinois.edu
University of Illinois
Urbana, Illinois, USA

David H. Smith IV
dhsmith2@illinois.edu
University of Illinois
Urbana, Illinois, USA

Chinedu Emeka
cemeka2@illinois.edu
University of Illinois
Urbana, Illinois, USA

Matthew West
mwest@illinois.edu
University of Illinois
Urbana, Illinois, USA

Craig Zilles
zilles@illinois.edu
University of Illinois
Urbana, Illinois, USA

ABSTRACT
With the increase of large enrollment courses and the growing
need to offer online instruction, computer-based exams randomly
generated from question pools have a clear benefit for computing
courses. Such exams can be used at scale, scheduled asynchronously
and/or online, and use versioning to make attempts at cheating
less profitable. Despite these benefits, we want to ensure that the
technique is not unfair to students, particularly when it comes to
equivalent difficulty across exam versions.

To investigate generated exam fairness, we use a Generalized
Partial Credit Model (GPCM) Item-Response Theory (IRT) model to
fit exams from a for-majors data structures course and non-majors
CS0 course, both of which used randomly generated exams. For
all exams, students’ estimated ability and exam score are strongly
correlated (𝜌 > 0.7), suggesting that the exams are reasonably fair.
Through simulation, we find that most of the variance in any given
student’s simulated scores is due to chance and the worst of the
score impacts from possibly unfair permutations is only around
5 percentage points on an exam. We discuss implications of this
work and possible future steps.

CCS CONCEPTS
• Social and professional topics→ Student assessment.

KEYWORDS
randomized exams, fairness, assessment, programming, exam gen-
eration
ACM Reference Format:
Max Fowler, David H. Smith IV, Chinedu Emeka, Matthew West, and Craig
Zilles. 2018. Are We Fair? Quantifying Score Impacts of Computer Science
Exams with Randomized Question Pools. InWoodstock ’18: ACM Symposium
on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY . ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
There exist two challenges to large scale assessment in computing
courses. First, computer science departments globally continue to
experience increased enrollment of majors as well as increased num-
bers of non-majors enrolling in computer science or programming
courses [5, 6, 10, 17, 25]. This increase in demand has also led to
the expansion of online programs [20, 22], especially in light of the
challenges presented by the COVID-19 pandemic. Given these chal-
lenges, computer-based assessment presents many advantages for
large scale computing courses. Computer-based assessment allows
for automated grading, reducing grading burden for staff and al-
lowing for instant feedback [1, 13, 30]. Computer-based assessment
also allows us to assess our students in more authentic settings, in
particular on machines with access to compilers/interpreters where
students can debug their code. Finally, computer-based assessment
facilitates both online as well as asynchronous assessment.

The adoption of online and/or asynchronous assessment, how-
ever, makes exam security a concern [7, 26]. One typical method
of providing exam security is to use versioned exams [14, 15, 28?
, 29]. Automatically generating these versioned exams can be ac-
complished by selecting questions at random from question pools
as well as by using item generators to generate unique instances of
parameterized questions [?]. With enough question versions, each
student can be presented a completely unique exam.

This approach to assessment does, however, come with a down-
side. Specifically, there is no guarantee that generated exams are
all the same exact level of difficulty. Existing work with automated
item generators suggests faculty can generally write item genera-
tors that generate variants of similar difficulty [8], but this is harder
to guarantee when using pools of “similar” but manually written
questions. Despite our best efforts, we may introduce unfairness
in our versioned exams by imperfectly constructing our question
pools.

On a practical level, we are interested in exploring unfairness
in the context of versioned exams. In this experience report, we
analyze computer-based exams generated with randomized ques-
tion pools from two computer science courses using Item Response
Theory (IRT) models to detect and quantify possible unfairness.

The rest of the report is organized as follows. In Section 2, we
briefly lay out related work on exam versioning and exam fairness.
We describe our data in Section 3 and our analysis methods in
Section 4. We present the results for our analysis in Section 5 and

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max Fowler, David H. Smith IV, Chinedu Emeka, Matthew West, and Craig Zilles

discuss how these results may be helpful to future courses with
version exams in Section 6. Finally, we conclude.

2 RELATEDWORK
2.1 Automatic Generation of Exams and Exam

Questions
There is a significant body of work on question and exam generation.
These include both individual question generators, randomized
pools, and whole exam randomization. We briefly review some of
this work below.

Automatic item generation is the creation of groups of similar
questions using parameterized question templates. Attali’s work
with Educational Testing Service’s Quick Math generator found
merely 2 of 57 automatically generated items included difficulty mis-
matches, and of those, less than a percent of students encountered
sufficiently different generated questions [3]. Use of templates also
empowers faculty to write their own question generators. Chen’s
work investigating the difficulty variance of such generators found
that faculty can almost always write item generators that produce
questions of equivalent difficulty [8]. Further, techniques proposed
by de Chiusole et al. allow for automatic determination of item
equivalence, meaning item generators can be more easily examined
and constrained to generate questions of equivalent difficulty [12].

Similar generation was used by Rusak and Yan to generate entire
exams for their Probability for Computer Scientists course [24].
While the domain of generation was relatively constrained — math-
ematics problems appropriate for a sophomore CS course — their
generation pipeline is readily extendable. Instructors provide ques-
tion skeletons and a set of dependent parameters for generation
to choose from where needed. The exam generator then gener-
ates a random exam for each student, ensuring no combination
of dependent parameters and generated parameters is repeated.
Their generation pipeline is reasonably successful, with 92.6% of
generated problems generating without error [24].

Another approach to generating exams is suggested by Ashraf
et al [2]. Rather than focus on question generation, which could
use the techniques above or could use question pools, they focus
on generating exams based on some desired learning outcomes or
educational taxonomies. They developed a framework to allow for
instructors to map their questions or item generators to different
learning outcomes and levels of Bloom’s taxonomy — effectively
pools — and then generate exams ensuring specified amounts of
coverage for topics and content levels.

2.2 Judging The Fairness of Exams
Anumber of methods have been proposed to investigate the fairness
of exams, both on an item level and exam-wide level. We review
some of these methods below.

Older exam generation methods use large banks of questions
to generate exams. Hwang et al. developed a parallel test sheet
algorithm for generating national exams that uses a large test bank
of questions and their meta-data to generate equivalently difficult
exams. Their algorithm uses Tabu search to enforce constraints
on difficulty and covered topics, with examiners only needing to
specify the type of exam, concepts to appear on the exam, and
bounds for the length of the exam in minutes [18]. However, this

Course Semester Exams (and points)

Data Structures Spring 2019

40 points: Exam 0
70 points: Programming Exam 1 – 3
100 points: Theory Exam 1 – 3
300 points: Final Exam

CS0 Python Fall 2019 150 points: Exam 1 – Exam 3
250 points: Exam 4 (Final)

CS0 Python Spring 2020 150 points: Exam 1 – Exam 3
250 points: Exam 4 (Final)

CS0 Python Fall 2020 150 points: Exam 1 – Exam 3
250 points: Exam 4 (Final)

Table 1: Semesters and exam point breakdowns for the four
data sources we use for our analysis.
approach does require sufficiently large test banks and data on the
questions to generate sufficiently many exams.

Davidson et al. advocate for using differential item functioning
(DIF) as a way to validate questions on exams and investigate possi-
ble item bias examsmay have for students of different demographics
and backgrounds [11]. They applied DIF analysis to an archetypal,
CS1 paper exam with code tracing and writing questions. While
they only detected one question with statistically significant but
functionally irrelevant bias, investigating exams for such bias going
forward is one important dimension of exam fairness.

When reusing questions, historical performance on questions
can be used to reduce unfairness in subsequent semesters. Sud et
al. show how exams generated with question pools can have their
difficulty variance reduced through Monte-Carlo based estimation
of exam variants’ scores and standard deviations using submissions
for questions from previous semesters and exams. Variants that
are too easy or too difficult can then be discarded as opposed to
being presented to students [23]. The weakness of this approach is
that new questions cannot have their difficulty estimated directly,
although even reducing the variance of other pools is a worthwhile
reduction in unfairness.

Clegg et al. propose simulating possible student mistakes as
a way to investigate question unfairness as well as autograder
configuration [9]. They present the results of observing student
code mistakes from real student submissions and develop a set of
mutation operators that can be applied to existing correct code to
make it incorrect. They propose automating the process of making
these mistakes and testing them, using the results of these tests
to assign partial credit students get for types of mistakes. They
propose this as an algorithmic way to more fairly provide points
from autograding results.

3 DATA AND COURSES
For our analysis, we use data from two classes, a CS0 course for non-
majors and a Data Structures course for majors. Both courses use
PrairieLearn for hosting their exams [30]. The 2019 semesters were
able to host their exams asynchronously with in-person proctoring,
while the 2020 semesters used synchronous online proctoring due
to COVID-19. Information about the courses is provided in Table 1.
We briefly describe the two courses and their exam structure below.

The CS0 course, taught in Python, was organized as a flipped
class that covered one major topic each week. Students were as-
signed weekly readings and accompanying assignments of multiple-
choice and true/false questions to complete before lecture. The

Are We Fair? Quantifying Score Impacts of Computer Science Exams with RandomizedQuestion Pools Woodstock ’18, June 03–05, 2018, Woodstock, NY

weekly 90-minute lecture used peer instruction to reinforce con-
cepts, and the weekly 80-minute lab consisted of practice activities,
designed for solo or pair work in 2019 and then increasingly small
group work when shifted online due to COVID. Each course topic
also had a weekly homework assignment that consisted of a mix of
small programming (i.e, a small function’s size) and short answer
(e.g. ‘What does this for loop print?’) questions.

Each semester, the CS0 course had five proctored exams, Exams
0 through 4. All the exams had a 50-minute time limit, except for the
final exam (Exam 4) which had a time limit of three hours. Exams
typically consisted of 20–30 question pools (40–45 on final exams),
fromwhich questions were randomly selected. In this way, each stu-
dent received their own exam. Pools were constructed of questions
selected to be of similar difficulty and content, per instructors’ ex-
perience. Further, some question pools used item generators, which
guaranteed exam uniqueness at least in the specific parameters of
generated questions. In this work, we focus on Exams 1 through
4, as Exam 0 is worth a small amount of credit and is primarily to
acclimate students to the testing platform.

The Data Structures course uses C++ to teach students how to
build and utilize a myriad of common data structures, including
queues, balanced trees, hash tables, and graphs. The course featured
three lectures a week covering course content and one lab session
a week where students worked on programming exercises in a
collaborative setting. Every two weeks, students completed a small
programming project, while students also had a small daily problem
to complete for practice and extra credit.

The exams in the course were also generated with randomized
pools and had multiple different structures. Exam 0 was a small
introduction to how different questions in the course are presented.
Three of the exams were programming exams, with a small num-
ber of questions focused on writing C++ code to implement/use
data structures with a 110 minute time limit. Another three of the
exams were theory exams, with randomized pools selecting from
multiple-choice and numerical answer questions about data struc-
tures and data structure theory with 50 minute time limits. Finally,
the course’s 3-hour final exam included both theory and program-
ming exam style questions. We consider all of the exams in our
analysis to see if different kinds of exam configurations are more
or less fair.

Both courses allowed for interpreter or compiler access during
exams. This allowed students to write, run, and test code before
submitting answers to programming-based questions. Providing
this more authentic programming experience during assessment is
part of the motivation for computer-based testing to begin with.

Given the different forms of exams between the two classes, we
are interested to see how different exam structures contribute to
the fairness of randomized question pools. Beyond that, the amount
of data we use is simply to give us access to more exams worth of
data and more chances to investigate possible unfairness in exams
created with randomized pools.

4 METHODS
Below, we detail our analysis approach. The pipeline used is pre-
sented in Figure 1.

For obtaining student ability levels, we used an Item-Response
Theory (IRT) model from the R’s mirt package. Given a (potentially
sparse) set of student scores for a collection of questions, an IRT
model characterizes both the questions and the students. We used a
two-parameter IRT model that estimates both a question’s difficulty
and its discrimination (i.e., its ability to differentiate between high
and low ability students). While a dichotomous IRT model requires
student scores to be either correct (1) or incorrect (0), we used mirt’s
Generalized Partial Credit Model (GPCM) to support polytomous
scores.

GPCM is an extension on the Partial Credit Model (PCM) which
allows for a non-uniform discrimination of questions on an exam.
This is important for our purposes for two reasons. First, exams
in both classes allow for partial credit, which is non-dichotomous.
Secondly, the rate at which students get a certain amount of partial
creditmay — and likely does — vary between different ability levels.
For example, it is reasonable to expect that students of low ability
are more likely to get less partial credit than students with high
ability.

The first step in our analysis is to transform item scores in our
exam data from a continues grading scale to one that is discrete.
This was done by rounding the scores to the nearest whole number
which, though slightly reducing the accuracy of our analysis, should
have a negligible impact on estimated student ability. The purpose
of this transformation is to satisfy the requirement of GPCM that
the set of possiable item scores be a relatively small number of
discrete values in order for the model to converge reliably.

Then, ability is fit for each exam using GPCM so that we snapshot
the student’s latent ability on that exam at that time. This way, these
methods can possibly be used to adjust students’ scores during the
semester should they receive an unfair exam as opposed to having
to wait until the end to analyze all the exams at once. We perform
this analysis to characterize the spread and correlation of student
ability versus exam score.

After fitting the model and thus gaining the estimated student
ability, item difficulty, and item discrimination scores, we use we
use mirt’s simdata capability to simulate students taking a variety
of exams. Specifically, for each exam, we generate 100 randomized
exam permutations. Then, for each of these randomized exam vari-
ants we simulate 500 attempts per student. As IRT is probabilistic
in nature, running these simulations will generate a distribution
of scores for each of the exam variants that a student with a given
ability would likely to achieve. To measure exam fairness for a
given exam, we calculate the ratio between score dispersion attrib-
utable to exam permutations and dispersion attributable to student
performance or chance, given by:

𝑆𝑆 𝑅𝑎𝑡𝑖𝑜𝑖 =

∑𝑛
𝑗=1

∑𝑚
𝑘=1 (𝑠𝑖 𝑗𝑘 − 𝜇𝑖 𝑗)2∑𝑛

𝑗=1
∑𝑚
𝑘=1 (𝑠𝑖 𝑗𝑘 − 𝜇𝑖)2

(1)

where,

• 𝑖: A given student 𝑖
• 𝑗 : The permutation 𝑗 out of 100 possible permutations (n)
• 𝑘 : Attempt 𝑘 out of the 500 (m)
• 𝑠𝑖 𝑗𝑘 : Student 𝑖’s 𝑘th attempt on the 𝑗 permutation of the
given exam

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max Fowler, David H. Smith IV, Chinedu Emeka, Matthew West, and Craig Zilles

Raw Exam Data Round Item Scores GPCM

Student Ability

Item Difficutly/Discrimination

Random Exam Simulations

SS Ratio (Eq. 1)

MAD (Eq. 2)

Exam Variations

Figure 1: Analysis Pipeline

• 𝜇𝑖 : The student’s mean across all simulated attempts for the
given exam, regardless of permutation

• 𝜇𝑖 𝑗 : The student’s mean across all simulated attempts for
permutation 𝑗 of the given exam

The ratio’s numerator is represented the within-permutation
variance whereas Ratio’s numerator and denominator represent
within permutation and across-permutation variance respectively.
This ratio indicates the degree to which a student score is explained
by the dispersion that is expected between students’ attempts and
how much is due to the permutations themselves. A ratio close to 1
indicates that each generated exam permutation has a similar mean
and standard deviation as all other permutations, with a ratio of
exactly 1 indicating that all of the dispersion in scores is due to
differential student performance or chance on individual attempts.
A ratio close to 0 indicates that the exam permutations had notably
different means and standard deviations for student 𝑖 , with a ratio
of exactly 0 indicating all of the dispersion in scores is due to the
permutations and that none of the permutations have score distri-
butions which overlap for student 𝑖 . To summarize with an example,
an exam with an SS Ratio of 80% has 80% of the given student’s
score variance attributable to chance and only the remaining 20%
attributable to question differences in generated permutations.

To quantify the difference in students’ scores, we use the sim-
ulated data to calculate the mean absolute deviation (MAD) as a
measure of points lost or gained during a specific exam attempt.
The MAD for a given student 𝑖 on a specific exam is given by:

𝑀𝐴𝐷𝑖 =
1
𝑛

𝑛∑︁
𝑗=1

| (𝜇𝑖 𝑗 − 𝜇𝑖 𝑗) | (2)

where,
• 𝑖: A given student 𝑖
• 𝑗 : The permutation 𝑗 out of 100 possible permutations (n)
• 𝜇𝑖 𝑗 : The student’s mean across all simulated attempts for
permutation 𝑗 of the given exam

• 𝜇𝑖 𝑗 : The mean of all means 𝜇𝑖 𝑗 for student 𝑖 and all possible
n (100) permutations of the given exam

For example, for a given student on exam 1, we first calculate
the mean of every permutation 𝑗 we simulated for that student,
all of the 𝜇𝑖 𝑗 for exam 1. Then, we calculate the mean of all of
these means; the mean of the means of the students’ permutation
scores on exam 1, 𝜇𝑖 𝑗 . We then use Equation 2 to calculate the mean
absolute deviation of that students’ mean permutation scores. It is
important to note that MAD does not specify directionality and, as
such, should be interpreted as the average number of points gained
or lost between their average scores of their simulated attempts
on each of the exam variants. When we present MAD, we do so in
percentage points out of 100: for example, a MAD of 11 means on
average that student received or lost 11 more percentage points on

a given exam than average for that student’s simulated attempts
across permutations.

MAD and variance together are both important for judging fair-
ness and impact on students’ scores. As stated, MAD is used to
identify the number of points lost or gained between exam vari-
ants but does not indicate whether the deviation in scores is due
to the natural variance that exists between student attempts or
if it is attributable to the variance from the exam variants. The
SS Ratio, meanwhile, does attribute the point loss to either exam
generation or student behavior/chance. An exam is unfair if the
SS Ratio is low in that the generated permutation dictates most of
the obtained score. This unfairness is worse for exams with a high
MAD, as the majority of the difference in final score is due to the
exam permutation received. In practice, reducing exam variance to
zero is impractical. The goal should be to keep as high an SS Ratio
as possible, with ideally low MADs so that potential unfair exam
generation is less costly to students. In Section 5, we present the
SS Ratio and MAD for all students as violin plots to present both
spread and density.

5 RESULTS
5.1 Comparing student ability to their exam

scores
First, we present results from our GPCM on the three semesters of
CS0 data. Each figure provides student ability, between 3 and -3, on
the y-axis and the students’ percent score out of 100% on the x-axis.
Each plot also features two red lines set at the midpoint of student
ability for that exam (functionally 0) and an exam score of 60%.
The correlation between estimated ability and score, Spearman’s
𝜌 , is given next to each exam’s name. The total count for each
quadrant of the red axes is given in the corners of each plot. Fall
2019 is shown in Figure 2a, Spring 2020 in Figure 2b, and Fall 2020
in Figure 2c.

Across all exams and semesters, the CS0 exams have strong
correlations between ability and scores. The lowest correlation
is 𝜌 = 0.89 for Spring 2020’s exam 3, which still means strong
correlation for Spearmen’s 𝜌 . This lower correlation corresponds
to more extreme outliers appearing in Spring 2020 versus other
semesters. The upward curve present for CS0 distributions may be
due to a ceiling effect, with many students receiving high scores.

With respect to analyzing these outliers, Spring 2020’s Exam 2
and 3 in Figure 2b and Fall 2020’s Exam 1, 3, and 4 from Figure 2c
have some interesting cases in the bottom left quadrant, with stu-
dents of abilities similar to their classmates appearing to perform
notably worse. Most of these outliers appear to occur for students
who have relatively fewer correct questions than the average stu-
dent on a given exam.

Are We Fair? Quantifying Score Impacts of Computer Science Exams with RandomizedQuestion Pools Woodstock ’18, June 03–05, 2018, Woodstock, NY

−2

0

2
N = 0

N = 52

N = 348

N = 248

Exam 1 (ρ = 0.95)
N = 0

N = 76

N = 309

N = 229

Exam 2 (ρ = 0.93)

0 25 50 75 100

−2

0

2
N = 0

N = 88

N = 313

N = 207

Exam 3 (ρ = 0.92)

0 25 50 75 100

N = 0

N = 61

N = 284

N = 241

Exam 4 (ρ = 0.95)

0.0 0.2 0.4 0.6 0.8 1.0
Score (out of 100%)

0.0

0.2

0.4

0.6

0.8

1.0

Ab
ilit

y

(a) Fall 2019

−2

0

2
N = 0

N = 30

N = 320

N = 233

Exam 1 (ρ = 0.9)
N = 0

N = 16

N = 295

N = 249

Exam 2 (ρ = 0.9)

0 25 50 75 100

−2

0

2
N = 0

N = 24

N = 287

N = 241

Exam 3 (ρ = 0.89)

0 25 50 75 100

N = 0

N = 6

N = 292

N = 249

Exam 4 (ρ = 0.91)

0.0 0.2 0.4 0.6 0.8 1.0
Score (out of 100%)

0.0

0.2

0.4

0.6

0.8

1.0

Ab
ilit

y
(b) Spring 2020

−2

0

2
N = 0

N = 52

N = 348

N = 248

Exam 1 (ρ = 0.95)
N = 0

N = 76

N = 309

N = 229

Exam 2 (ρ = 0.93)

0 25 50 75 100

−2

0

2
N = 0

N = 88

N = 313

N = 207

Exam 3 (ρ = 0.92)

0 25 50 75 100

N = 0

N = 61

N = 284

N = 241

Exam 4 (ρ = 0.95)

0.0 0.2 0.4 0.6 0.8 1.0
Score (out of 100%)

0.0

0.2

0.4

0.6

0.8

1.0

Ab
ilit

y

(c) Fall 2020

Figure 2: CS0 Exam Scores vs Ability

The same plots are presented for Data Structures in Figure 3.
As with CS0, all exams show a strong correlation between student
ability and score. Most of the exams have a correlation 𝜌 > .9, with
the final (𝜌 = 0.69) as an outlier, suggesting the final may have
been easier for students of lower ability to receive higher scores on
than typical. All exams still show strong correlation, implying the
courses’ exams are reasonably fair. Theory exam 1 appears to have
been particularly difficult, but no more unfair than other exams.

−3

−2

−1

0

1

2

3 N = 0

N = 34

N = 258

N = 125

Exam 0
(ρ = 0.93)

N = 145

N = 164

N = 107

N = 1

Theory Exam 1
(ρ = 0.93)

N = 2

N = 78

N = 280

N = 57

Programming Exam 1
(ρ = 0.91)

N = 0

N = 21

N = 257

N = 139

Theory Exam 2
(ρ = 0.94)

0 50 100
−3

−2

−1

0

1

2

3 N = 19

N = 191

N = 187

N = 20

Programming Exam 2
(ρ = 0.94)

0 50 100

N = 0

N = 12

N = 253

N = 152

Theory Exam 3
(ρ = 0.92)

0 50 100

N = 2

N = 95

N = 233

N = 87

Programming Exam 3
(ρ = 0.94)

0 50 100

N = 4

N = 38

N = 223

N = 152

Final Exam
(ρ = 0.69)

0.0 0.2 0.4 0.6 0.8 1.0
Score (out of 100%)

0.0

0.2

0.4

0.6

0.8

1.0

Ab
ilit

y

Figure 3: Data Structures Spring 2019 Score vs Ability

5.2 Simulated results: how much variance is due
to student performance rather than exam
fairness?

The simulated results are provided as both the MAD and the SS-
Ratios. The CS0 course’s MADs are given in Figure 4. CS0 exams
got better with respect to the possible MAD across each semester,
with higher possible score gaps in Fall 2019 decreasing through Fall
2020. The worst possible gaps were in Fall 2019’s exam 3 and final,
a little over 5 percentage points. The CS0 average MAD was 4.65 in
Fall 2019, 2.28 in Spring 2020, and 2.37 in Fall 2020.

Figure 4: The mean absolute deviation in percentage points
for CS0 exams. At worst, there was a slightly above 5 percent-
age point mean deviation in Fall 2019.

We also present the density of SS Ratios as a measure for how
much of a students’ score difference was due to chance as opposed
to exam permutation. Figure 5 shows these variances for the three
semesters of CS0. The CS0 exams got better across semesters, with
Fall 2019 having an average of 32.4% and Spring 2020 and Fall 2020
having an average of 69.3% and 71.4% respectively.

Figure 5: The SS ratio for CS0 students’ simulated scores.

The MADs and variance ratio for the data structures course are
presented in Figure 6 and Figure 7 respectively. The exams are
labeled in the order they were offered in the course, with exam 0 as
1 and the final as 8. The data structures MAD is large in some in-
stances — for example, an up to 19 percentage point score difference
on the third exam, programming exam 1. Due to the small number
of questions on data structures’ programming exams, we attribute
these large gaps to IRT. Specifically, students who succeeded on
all the questions would be assumed perfect and simulate as such,
creating a larger gap between these simulated perfect students and
more common student behavior.Data Structures’ average MAD was
2.77 percentage points and SS Ratio was 90.6%.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Max Fowler, David H. Smith IV, Chinedu Emeka, Matthew West, and Craig Zilles

Figure 6: Themean absolute deviation for the Data Structures
exams.

Figure 7: The SS ratio for the Data Structures exams. Exam 6
had so little variance caused by different exam permutations
that it is plotted separately.

6 DISCUSSION
Ultimately, the apparent fairness of the generated exam permuta-
tions is reasonably pleasing. The worst semester in this respect
was Fall 2019, but even this variance in score is less than half a
letter grade. While large between permutation variance is unfair,
most of this variance was below half a letter grade for a given
exam. Fall 2019 having the worst variance makes sense to us as this
was the first semester this CS0 course was taught; in subsequent
semesters, the instructor had data with which to trim pools down
and better balance pool difficulty. While not provable from this
data, it is likely the reduction in unfairness is largely due to exam
construction, because we know the instructor adjusted pools to
remove outlier questions.

The results from the Data Structures course are surprising. Ini-
tially, we thought those exams may show more variance in scores
due to permutation due to those exams tending to have less overall
questions than the CS0 exams. However, the Data Structures exams
had the least variance attributable to exam permutations out of
the semesters studied. On examination, this may be because Data
Structures’ exam questions were commonly analogous, with the
same question featuring different numbers constituting a “new”
question in the pool. As such, there is likely a smaller chance of
faculty making incorrectly balanced pools, similar to how item-
generators tend to produce questions of similar difficulty in Chen
et al.’s work [8]. The largest MADs in Data Structures were on pro-
gramming exams (3, 5, and 7 in Figure 6), which had comparatively
fewer questions than other exams. This may indicate that small
numbers of questions on exams allow for high variance in scores
even when the generation is fair.

For our purposes, the low score impact even from the worst
variance in students’ scores suggests we are safe to continue using
randomized pool exams. However, we would still like to see if this
affected final grades, and if so, compensate students who received

exams less easy than their similar ability peers. Totally eliminating
unfairness is likely unfeasible, so a possible barometer to use going
forward will be to ensure exam unfairness is no worse than exam
precision, such as the 1

3 final letter grade precision estimated by
Scott et al. in a large introductory physics course [27].

Our work does not address how to compensate students for poor
scores due to chance. One potential solution may be found in the
use of second-chance testing wherein students can elect to take
a second exam in order to replace or improve their score [16, 19].
This, in combination with carefully balanced question pools and
frequent low-stakes exams [4, 21], could be used to both lower the
chances and minimize the negative impact of a student being dealt
a potentially unfair exam.

6.1 Limitations
As this is an experience report, there is a limit to what we can say
with our results. Even though the results from this dataset give us
little room for concern in these randomized exams, our results do
not necessarily generalize to all versioned exams generated from
question pools. A larger study is in order to map out trends in
these kinds of examinations, as well as to investigate better ways
to mitigate what unfairness does appear when using randomized
pools, even if the score impact is low.

Some hedging is appropriate for the estimates of within exam
variance. These estimates are simulated using an IRT model. As
this variance has not been empirically determined, we cannot be
sure that the estimates provided are perfect, and the actual score
variance within these versioned exams in a real course will vary.

7 CONCLUSION
In this report, we investigate whether the exams generated from
random pools used in two courses were fair. We determine this
fairness by calculating how much variance in students’ scores is
due to student performance and not which randomly permuted
exam they received. We also calculate the mean absolute deviation
(MAD) in scores as a way to quantify how unfairly harder (or easier)
an exam permutation may have been.

We use IRT simulations to simulate students taking 100 exam per-
mutations 500 times each. Ultimately, most of our exams were rea-
sonably fair, with 60% or more of the point difference between any
exam a simulated student took being due to student performance
and not the specific random exam they received. Data Structures
had an average MAD of 2.77 percentage points and an average SS
Ratio of 90.6%, while CS0 had an across semester average MAD of
3.10 and SS Ratio of 57.7%. Even our worst semester, Fall 2019’s CS0
class, had only a slightly over a 5 percentage point impact on two
exams being the worst result of getting specific exam permutations.

Our work gives us confidence that these randomized pool exams
can be reasonably fair and have gotten more fair for the CS0 course
as time has gone on. We are interested in refining these methods on
a larger selection of courses that use versioned exams to investigate
if the trends seen here appear in more and varied courses. Following,
we hope to use exam fairness detection in the future as a way to
award points to students who receive the rare unfair exam variant.

Are We Fair? Quantifying Score Impacts of Computer Science Exams with RandomizedQuestion Pools Woodstock ’18, June 03–05, 2018, Woodstock, NY

REFERENCES
[1] Kirsti M Ala-Mutka. 2005. A Survey of Automated Assessment Ap-

proaches for Programming Assignments. Computer Science Educa-
tion 15, 2 (2005), 83–102. https://doi.org/10.1080/08993400500150747
arXiv:https://doi.org/10.1080/08993400500150747

[2] Ashraf Amria., Ahmed Ewais., and Rami Hodrob. 2018. A Framework for
Automatic Exam Generation based on Intended Learning Outcomes. In Pro-
ceedings of the 10th International Conference on Computer Supported Education
- Volume 2: CSEDU,. INSTICC, SciTePress, 474–480. https://doi.org/10.5220/
0006795104740480

[3] Yigal Attali. 2018. Automatic Item Generation Unleashed: An Evaluation of a
Large-Scale Deployment of Item Models. In Artificial Intelligence in Education,
Carolyn Penstein Rosé, Roberto Martínez-Maldonado, H. Ulrich Hoppe, Rose
Luckin, Manolis Mavrikis, Kaska Porayska-Pomsta, Bruce McLaren, and Benedict
du Boulay (Eds.). Springer International Publishing, Cham, 17–29.

[4] E. G. Bailey, J. Jensen, J. Nelson, H. K. Wiberg, and J. D. Bell. 2017. Weekly
Formative Exams and Creative Grading Enhance Student Learning in an Intro-
ductory Biology Course. CBE—Life Sciences Education 16, 1 (March 2017), ar2.
https://doi.org/10.1187/cbe.16-02-0104

[5] Betsy Bizot and Stu Zweben. 2019. Generation CS, Three Years Later. Technical
Report. Computing Research Association. https://cra.org/generation-cs-three-
years-later/

[6] Tracy Camp, W. Richards Adrion, Betsy Bizot, Susan Davidson, Mary Hall, Su-
sanne Hambrusch, Ellen Walker, and Stuart Zweben. 2017. Generation CS: The
Mixed News on Diversity and the Enrollment Surge. ACM Inroads 8, 3 (July 2017),
36–42. https://doi.org/10.1145/3103175

[7] Binglin Chen, Matthew West, and Craig Zilles. 2018. How Much Randomization
is Needed to Deter Collaborative Cheating on Asynchronous Exams?. In Proceed-
ings of the Fifth Annual ACM Conference on Learning at Scale (London, United
Kingdom) (L@S ’18). Association for Computing Machinery, New York, NY, USA,
Article 62, 10 pages. https://doi.org/10.1145/3231644.3231664

[8] Binglin Chen, Craig Zilles, Matthew West, and Timothy Bretl. 2019. Effect
of Discrete and Continuous Parameter Variation on Difficulty in Automatic
Item Generation. In Artificial Intelligence in Education, Seiji Isotani, Eva Millán,
Amy Ogan, Peter Hastings, Bruce McLaren, and Rose Luckin (Eds.). Springer
International Publishing, Cham, 71–83.

[9] Benjamin Clegg, Siobhán North, Phil McMinn, and Gordon Fraser. 2019. Sim-
ulating Student Mistakes to Evaluate the Fairness of Automated Grading. In
Proceedings of the 41st International Conference on Software Engineering: Software
Engineering Education and Training (Montreal, Quebec, Canada) (ICSE-SEET ’19).
IEEE Press, 121–125. https://doi.org/10.1109/ICSE-SEET.2019.00021

[10] Computing Research Association. 2017. Generation CS: Computer Science Under-
graduate Enrollments Surge Since 2006. Technical Report. https://cra.org/data/
generation-cs/

[11] Matt J. Davidson, Brett Wortzman, Amy J. Ko, and Min Li. 2021. Investigating Item
Bias in a CS1 Exam with Differential Item Functioning. Association for Computing
Machinery, New York, NY, USA, 1142–1148. https://doi.org/10.1145/3408877.
3432397

[12] Debora de Chiusole, Luca Stefanutti, Pasquale Anselmi, and Egidio Robusto.
2018. Testing the actual equivalence of automatically generated items. Behavior
Research Methods 50, 1 (Feb. 2018), 39–56. https://doi.org/10.3758/s13428-017-
1004-5

[13] Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: Auto-
matically Grading Programming Assignments. In Proceedings of the 13th Annual
Conference on Innovation and Technology in Computer Science Education (Madrid,
Spain) (ITiCSE ’08). Association for Computing Machinery, New York, NY, USA,
328. https://doi.org/10.1145/1384271.1384371

[14] Chinedu Emeka and Craig Zilles. 2020. Student Perceptions of Fairness and
Security in a Versioned Programming Exam. In Proceedings of the 2020 ACM
Conference on International Computing Education Research (Virtual Event, New
Zealand) (ICER ’20). Association for Computing Machinery, New York, NY, USA,
25–35. https://doi.org/10.1145/3372782.3406275

[15] Lena Feinman. 2018. Alternative to Proctoring in Introductory Statistics Com-
munity College Courses. Walden Dissertations and Doctoral Studies (Jan. 2018).
https://scholarworks.waldenu.edu/dissertations/4622

[16] Oscar E. Fernandez. 2021. Second Chance Grading: An Equitable, Mean-
ingful, and Easy-to-Implement Grading System that Synergizes the Re-
search on Testing for Learning, Mastery Grading, and Growth Mindsets.
PRIMUS 31, 8 (2021), 855–868. https://doi.org/10.1080/10511970.2020.1772915
arXiv:https://doi.org/10.1080/10511970.2020.1772915

[17] Daniel T. Fokum, Daniel N. Coore, Eyton Ferguson, Gunjan Mansingh, and Carl
Beckford. 2019. Student Performance in Computing Courses in the Face of
Growing Enrollments. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association
for Computing Machinery, New York, NY, USA, 43–48. https://doi.org/10.1145/
3287324.3287354

[18] Gwo-Jen Hwang, Hui-Chun Chu, Peng-Yeng Yin, and Ji-Yu Lin. 2008. An in-
novative parallel test sheet composition approach to meet multiple assessment
criteria for national tests. Computers & Education 51, 3 (2008), 1058–1072.
https://doi.org/10.1016/j.compedu.2007.10.006

[19] Jason W. Morphew, Mariana Silva, Geoffrey Herman, and Matthew West. 2020.
Frequent mastery testing with second-chance exams leads to enhanced student
learning in undergraduate engineering. Applied Cognitive Psychology 34, 1 (2020),
168–181. https://doi.org/10.1002/acp.3605

[20] Neil P. Morris, Mariya Ivancheva, Taryn Coop, Rada Mogliacci, and Bronwen
Swinnerton. 2020. Negotiating growth of online education in higher education.
International Journal of Educational Technology in Higher Education 17, 1 (Nov.
2020), 48. https://doi.org/10.1186/s41239-020-00227-w

[21] George Nakos and Anita Whiting. 2018. The role of frequent short exams in
improving student performance in hybrid global business classes. Journal of
Education for Business 93, 2 (2018), 51–57. https://doi.org/10.1080/08832323.2017.
1417231 arXiv:https://doi.org/10.1080/08832323.2017.1417231

[22] Shailendra Palvia, Prageet Aeron, Parul Gupta, Diptiranjan Mahapatra, Ratri
Parida, Rebecca Rosner, and Sumita Sindhi. 2018. Online Education: Worldwide
Status, Challenges, Trends, and Implications. Journal of Global Information
Technology Management 21, 4 (2018), 233–241. https://doi.org/10.1080/1097198X.
2018.1542262 arXiv:https://doi.org/10.1080/1097198X.2018.1542262

[23] Matthew West Paras Sud and Craig Zilles. 2019. Reducing Difficulty Variance
in Randomized Assessments. In 2019 ASEE Annual Conference & Exposition.
ASEE Conferences, Tampa, Florida. https://doi.org/10.18260/1-2--33228

[24] Gili Rusak and Lisa Yan. 2021. Unique Exams: Designing Assessments for In-
tegrity and Fairness. Association for Computing Machinery, New York, NY, USA,
1170–1176. https://doi.org/10.1145/3408877.3432556

[25] Mehran Sahami and Chris Piech. 2016. As CS Enrollments Grow, Are We
Attracting Weaker Students?. In Proceedings of the 47th ACM Technical Sym-
posium on Computing Science Education (Memphis, Tennessee, USA) (SIGCSE
’16). Association for Computing Machinery, New York, NY, USA, 54–59. https:
//doi.org/10.1145/2839509.2844621

[26] Mohammad A Sarrayrih and Mohammed Ilyas. 2013. Challenges of online exam,
performances and problems for online university exam. International Journal of
Computer Science Issues (IJCSI) 10, 1 (2013), 439.

[27] Michael Scott, Tim Stelzer, and Gary Gladding. 2006. Evaluating multiple-choice
exams in large introductory physics courses. Physical Review Special Topics
- Physics Education Research 2, 2 (July 2006), 020102. https://doi.org/10.1103/
PhysRevSTPER.2.020102

[28] Mariana Silva, Matthew West, and Craig Zilles. 2020. Measuring the Score Ad-
vantage on Asynchronous Exams in an Undergraduate CS Course. In Proceedings
of the 51st ACM Technical Symposium on Computer Science Education (Portland,
OR, USA) (SIGCSE ’20). Association for Computing Machinery, New York, NY,
USA, 873–879. https://doi.org/10.1145/3328778.3366859

[29] Michael P. Watters, Paul J. Robertson, and Renae K. Clark. 2011. Student Percep-
tions of Cheating in Online Business Courses. Journal of Instructional Pedagogies
6 (Sept. 2011). https://eric.ed.gov/?id=EJ1097041

[30] Matthew West, Geoffrey L. Herman, and Craig Zilles. 2015. PrairieLearn:
Mastery-based Online Problem Solving with Adaptive Scoring and
Recommendations Driven by Machine Learning. 26.1238.1–26.1238.14.
https://peer.asee.org/prairielearn-mastery-based-online-problem-solving-
with-adaptive-scoring-and-recommendations-driven-by-machine-learning

https://doi.org/10.1080/08993400500150747
https://arxiv.org/abs/https://doi.org/10.1080/08993400500150747
https://doi.org/10.5220/0006795104740480
https://doi.org/10.5220/0006795104740480
https://doi.org/10.1187/cbe.16-02-0104
https://cra.org/generation-cs-three-years-later/
https://cra.org/generation-cs-three-years-later/
https://doi.org/10.1145/3103175
https://doi.org/10.1145/3231644.3231664
https://doi.org/10.1109/ICSE-SEET.2019.00021
https://cra.org/data/generation-cs/
https://cra.org/data/generation-cs/
https://doi.org/10.1145/3408877.3432397
https://doi.org/10.1145/3408877.3432397
https://doi.org/10.3758/s13428-017-1004-5
https://doi.org/10.3758/s13428-017-1004-5
https://doi.org/10.1145/1384271.1384371
https://doi.org/10.1145/3372782.3406275
https://scholarworks.waldenu.edu/dissertations/4622
https://doi.org/10.1080/10511970.2020.1772915
https://arxiv.org/abs/https://doi.org/10.1080/10511970.2020.1772915
https://doi.org/10.1145/3287324.3287354
https://doi.org/10.1145/3287324.3287354
https://doi.org/10.1016/j.compedu.2007.10.006
https://doi.org/10.1002/acp.3605
https://doi.org/10.1186/s41239-020-00227-w
https://doi.org/10.1080/08832323.2017.1417231
https://doi.org/10.1080/08832323.2017.1417231
https://arxiv.org/abs/https://doi.org/10.1080/08832323.2017.1417231
https://doi.org/10.1080/1097198X.2018.1542262
https://doi.org/10.1080/1097198X.2018.1542262
https://arxiv.org/abs/https://doi.org/10.1080/1097198X.2018.1542262
https://doi.org/10.18260/1-2--33228
https://doi.org/10.1145/3408877.3432556
https://doi.org/10.1145/2839509.2844621
https://doi.org/10.1145/2839509.2844621
https://doi.org/10.1103/PhysRevSTPER.2.020102
https://doi.org/10.1103/PhysRevSTPER.2.020102
https://doi.org/10.1145/3328778.3366859
https://eric.ed.gov/?id=EJ1097041
https://peer.asee.org/prairielearn-mastery-based-online-problem-solving-with-adaptive-scoring-and-recommendations-driven-by-machine-learning
https://peer.asee.org/prairielearn-mastery-based-online-problem-solving-with-adaptive-scoring-and-recommendations-driven-by-machine-learning

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automatic Generation of Exams and Exam Questions
	2.2 Judging The Fairness of Exams

	3 Data and Courses
	4 Methods
	5 Results
	5.1 Comparing student ability to their exam scores
	5.2 Simulated results: how much variance is due to student performance rather than exam fairness?

	6 Discussion
	6.1 Limitations

	7 Conclusion
	References

