Autograding “Explain in Plain English” questions using NLP

Max Fowler
University of Illinois
Urbana, IL, USA
mfowler5@illinois.edu

Matthew West
University of Illinois
Urbana, IL, USA
mwest@illinois.edu

ABSTRACT

Previous research suggests that “Explain in Plain English” (EiPE)
code reading activities could play an important role in the devel-
opment of novice programmers, but EiPE questions aren’t heavily
used in introductory programming courses because they (tradition-
ally) required manual grading. We present what we believe to be
the first automatic grader for EiPE questions and its deployment in
a large-enrollment introductory programming course. Based on a
set of questions deployed on a computer-based exam, we find that
our implementation has an accuracy of 87-89%, which is similar in
performance to course teaching assistants trained to perform this
task and compares favorably to automatic short answer grading
algorithms developed for other domains. In addition, we briefly
characterize the kinds of answers that the current autograder fails
to score correctly and the kinds of errors made by students.

CCS CONCEPTS

+ Social and professional topics — CS1; - Computing method-
ologies — Natural language processing.

KEYWORDS
code reading, Explain in Plain English, ASAG, NLP, CS1

ACM Reference Format:

Max Fowler, Binglin Chen, Sushmita Azad, Matthew West, and Craig Zilles.
2021. Autograding “Explain in Plain English” questions using NLP. In Pro-
ceedings of the 52nd ACM Technical Symposium on Computer Science Educa-
tion (SIGCSE °21), March 13-20, 2021, Virtual Event, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3408877.3432539

1 INTRODUCTION

The historic difficulty in learning to program [24] may be in part
due to a pre-mature emphasis on code writing rather than code
reading. For example, a recent theory of instruction for introductory
programming [42] suggests that students should understand com-
mon programming patterns/idioms via code reading activities prior

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE °21, March 13-20, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8062-1/21/03...$15.00
https://doi.org/10.1145/3408877.3432539

Binglin Chen
University of Illinois
Urbana, IL, USA
chen386@illinois.edu

Sushmita Azad
University of Illinois
Urbana, IL, USA
sazad2@illinois.edu

Craig Zilles
University of Illinois
Urbana, IL, USA
zilles@illinois.edu

to being asked to compose those programming patterns/idioms to
solve problems (i.e., writing complete routines). This theory is well
motivated by the research literature (discussed in Section 2) which
recognizes that (1) expert programmers use programming language
features in idiomatic ways, (2) learning to program is as much about
learning these idioms as it is about learning the syntactic elements
themselves, and (3) activities like code tracing and code reading
provide novices a means of developing programming skills with a
lower cognitive load than code writing itself and, hence, should be
employed to prepare students for code writing.

While code tracing and code writing activities are commonplace
in introductory programming (CS 1) courses, code reading is not
nearly as prominent. We could just ask our students to study large
banks of programming examples, but many students require an
incentive to get them to do assigned reading activities [14, 30]. One
approach to gradable code reading activities proposed in the lit-
erature is “Explain in Plain English” (EiPE) questions (as shown
in Figure 1) that ask students to describe in natural language (e.g.,
English) the high-level behavior of a short piece of code. While
EiPE questions are well regarded by researchers, they aren’t in
widespread instructional use, presumably due to the burden of man-
ually grading them and the slow feedback provided to students. In
light of the large enrollments in many CS 1 classes, we sought to
develop a means to automatically grade EiPE questions. As such,
this paper poses the following research question: Can natural lan-
guage processing (NLP) technology be used to automatically grade
EiPE questions at accuracy rates comparable to humans?

In this work, we describe our initial development of an NLP-
based autograder for EiPE questions and its use in a large-enrollment
university-level introductory programming course. In particular we:
1) describe what we believe to be the first published implementation
of autograded EiPE questions; 2) characterize the accuracy of the im-
plementation as a function of the amount of training data, with our
87-89% accuracy suggesting EiPE may be simpler than other kinds
of automatic short-answer grading; 3) compare the accuracy of the
EiPE autograder with trained (non-researcher) teaching assistants
(TAs) and find that the EiPE autograder has similar accuracy.

2 RELATED WORK
2.1 “Hierarchy” of programming skills

Researchers theorize that there is a loose hierarchy of programming
skills with code writing at the top of the hierarchy, and many pro-
gramming students struggle with tasks lower in the hierarchy [17].

https://doi.org/10.1145/3408877.3432539
https://doi.org/10.1145/3408877.3432539

“ Example Explain-in-Plain English (EiPE) question prompt

Write a short, high-level English language description of the code in def f(x, y):
the highlighted region. Do not give a line-by-line description. z=20
for val in x:
Assume that the variable x is a list of numbers (either int or if val < y:
float) and the variable y is a number. You can assume that the z +=1
code compiles and runs without error. return z
(2]

E Example formative feedback given after student submits answer

Here is an explanation of the code:

Iterate through the list x; each iteration

Here are some of the ways we would describe this code

Return how many numbers in a list are less than a given value.
Count how many values in x are less than y
compute the count of values in a list below a threshold.

variable “val” holds the current list element

Check if the list element is less than y

Counter pattern: initialize variable to 0, conditionally increment

def f(x, y):
lz=0
for val in x:
if val < y:

z +=1

return z N

Figure 1: An example mid-semester automated code-reading exercise (A) in a Python-based intro CS course. After students
submit their answers, they are graded and shown example solutions (B) to aid learning. Non-trivial code fragments are
deconstructed—highlighting important idioms—to show correspondences between code and natural language descriptions.

These skills span from understanding syntax (as the easiest), to
code tracing (executing code in your head for one particular in-
put), to code reading/explaining (abstracting the behavior of code
across all inputs), to code writing (as the most complex) [17]. It has
been shown that for a given piece of code, task difficulty generally
increases as we move up the hierarchy (e.g., tracing a swap vs. read-
ing/explaining a swap vs. writing a swap) [20, 39], and students’
mastery of the lower level skills is predictive of their code writing
ability [8, 18, 20, 37]. In particular, Lopez et al. find that students’
performance on tracing and code reading questions account for 46%
of the variance in their performance on code writing questions [20].
Lister et al. state that, while their data doesn’t support the idea of
a strict hierarchy, “We found that students who cannot trace code
usually cannot explain code, and also that students who tend to
perform reasonably well at code writing tasks have also usually
acquired the ability to both trace code and explain code.”[18]
Whalley et al. argue that in order for a novice to write a par-
ticular piece of code, they must be able to comprehend that same
piece of code and the knowledge and strategies within it [39]. In
particular, programmers need to be able to understand code at the
relational level (i.e., can summarize the code’s purpose) and not just
the multistructural (i.e., line-by-line) level [39]. Longitudinal studies
find that students who are unable to explain code relationally early
in the semester have difficulty writing code later in the semester [8].
It has been proposed that novice instruction should focus more
on code tracing and reading [1, 6, 7, 18, 27, 40]. Lister et al. state, “It

is our view that novices only begin to improve their code writing
ability via extensive practice in code writing when their tracing
and explaining skills are strong enough to support a systematic
approach to code writing ...” [18]

In particular, code reading activities may be among the best activ-
ities for helping novices learn to use common programming idioms.
One important difference from novice programmers is that experts
can automatically ‘chunk’ multiple syntax elements and process
them as one unit [6, 12, 15, 25, 41], which reduces their cognitive
load [35]. These chunks (or schema in the cognitive load literature)
are developed through repeated experiences that have identifiable
features in common [23] and are learned more efficiently in lower
cognitive load activities (i.e., code reading rather than code writ-
ing) [36]. When students had relevant schema available, Rist found
that students could and did reason forward from plan to code [31].

While all published works involving EiPE questions have been
on summative assessments, Corney et al. suggest that “the value
of EiPE problems may therefore be more as formative assessment
rather than summative assessment” [7]. The challenges to using
EiPE in formative assessment are having incentives in place to get
the students to do the assignments [14] and giving the students
immediate feedback on their understanding [29].

2.2 Automatic short answer grading (ASAG)

Automatically grading EiPE questions falls into the category of
automatic short answer grading (ASAG). ASAG is characterized

Dataset Score type Best score Citation

Texas [26] r 0.630 [13]
ASAP-SAS [10] QWK 0.791 [16]
Beetle UA 5-way [9] micro F1 0.780 [22]
SciEntsBank UA 5-way [9] F1 0.692 [22]

Table 1: The strongest reported results on publicly-available
ASAG datasets [11].

by five criteria [3]: (1) student must recall external knowledge, (2)
natural language responses, (3) response length of a phrase to a
few sentences, (4) grading emphasizes content rather than writing
style, and (5) focused prompts. ASAG is challenging because there
are many ways to express a correct answers in natural language.

While there has been an evolution of ASAG techniques [3], cur-
rent competitive ASAG systems are all based on machine learn-
ing [11]. These use a variety of features, including lexical (e.g.,
bag-of-words), morphological (e.g., stem matches), semantic (e.g.,
latent semantic analysis), syntactic (e.g., part-of-speech tagging),
and surface (e.g., word count). A wide variety of machine learning
techniques have also been used [11]. Most recently, dialog based
systems and intelligent tutoring systems [28, 32, 33] and end-to-end
models have been used for ASAG [19, 43].

Much of the work on ASAG is focused on K-12, so there is rela-
tively little ASAG work on Computer Science subject matter. The
main application of ASAG on computing content is the “Texas
dataset” [26], which features traditional short answer questions
from a data structures course (e.g. “What is the role of a prototype
program in problem solving?”) and no questions related to describ-
ing code. Many researchers have used this data set to evaluate
novel ASAG algorithms [13, 21, 34], but none of these papers are
computer science domain specific.

The current state of the art of ASAG is only modestly accurate.
Four publicly-available ASAG datasets have multiple results re-
ported [9, 10, 26] (see [11] for a detailed summary). Table 1 lists the
best reported results for ASAG datasets (as of early 2020).

3 AUTOGRADED EIPE QUESTIONS

In line with research literature recommendations (Section 2.1), we
developed our EiPE system primarily for use as a formative assess-
ment (e.g., homework), as our primary goal was repeated practice
with reading code so that students would incorporate common
programming idioms into their programming repertoire. As will
be discussed in Section 4, we do include the EiPE questions on our
exams, primarily to motivate students to take this formative activity
seriously and less to evaluate students skill level.

Our EiPE activities have been implemented in the same online
system that the students use for their homework. An example
EiPE question is shown in Figure 1(A). In general, the questions
have been designed to have relational descriptions, but some of
the questions in the first couple of weeks of the semester involve
just a single operator (e.g., concatenation, floor division) in order to
introduce students to the tool early and ensure they know the names
of operators. The components of this interface (e.g., directions,
highlighting, type information) have been refined iteratively to
direct students toward the desired kind of (relational) answer.

Student submissions are immediately scored, and student feed-
back includes example descriptions, as shown in Figure 1(B). For

the later, more complicated questions, where we are concerned that
some students might not be able to understand the relationship
between the correct description with the provided code, the solu-
tion provides a visual explanation of how the code relates to the
description, highlighting common programming idioms.

When placed on a weekly homework assignment, EiPE questions
were grouped into pools of 8-12 questions. Each time a student
attempts the question, they are shown a random selection from the
question pool. To get full credit on the question, students have to
answer a number of questions correctly. When they correctly an-
swer the question, they are awarded points, but there is no penalty
for incorrect answers. This approach makes the activity somewhat
tolerant of an imperfect autograder, as any false negatives only
delay (rather than prevent) students from getting their points.

Because there was no penalty for wrong answers, we discovered
that a group of students were putting in “garbage” answers to get
the system to show its example correct answers. We attempted to
discourage this behavior in two ways: 1) we created a garbage filter
that prevents the display of our correct answers when the student
submission is not deemed to be an actual attempt to answer the
question, and 2) we turned off text selection for the correct answers
shown to make copying them require additional effort.

3.1 The EiPE autograder

The autograder that we report here is significantly simpler than the
state of the art ASAG. Our autograder is a logistic regression model
on bag-of-words and bigram (pairs of adjacent words) features.
In order to minimize the impact of non-word symbols on feature
extraction, students’ responses need to be preprocessed.

The first step of preprocessing is to remove quotes in the stu-
dents’ responses. This helps to handle cases where students quoted
a variable name or the entire response. The second step is to in-
sert spaces before and after mathematical operators such as the
addition operator “+” and all kinds of brackets. This ensures that
all mathematical expressions will be spaced equivalently between
operators and operands.

Each response is then split into sentences using the Python
natural language toolkit n1tk’s sentence tokenizer. Each sentence
is further split into a list of tokens by nl1tk’s word tokenizer. The
resulting tokens could be words, numbers, or math symbols. These
tokens are then cast to lower case and passed to a spellchecker to
correct misspelled words. At the end of the above processing, each
student’s response has been converted into lists of tokens.

During training, we select a set of bag-of-words and bigram
features for each question individually. For each response in the
training set, we first identify the set of words and bigrams present
(ignoring duplicates). We then count what fraction of the training
set has each word and bigram. The 40% most frequent words and
20% most frequent bigrams are then used as the feature set.

Each response is converted to a feature vector of 0s and 1s,
where 1 at a index indicates a particular word or bigram in the
feature set is present in the response. These vectors are then fed
into scikit-learn’slogistic regression to train a model. The model
produces binary correct/incorrect judgments.

The autograder’s garbage filter is a rule-based algorithm relying
on a vocabulary extracted from students’ responses. Its vocabulary
is created by tokenizing all correct student responses and counting

the occurrences of each token. The 75% most frequent tokens were
considered as the non-garbage vocabulary. The garbage filter cate-
gorizes as garbage any response with two or fewer tokens or with
less than 60% of its tokens in the non-garbage vocabulary.

4 METHODS

Our EiPE autograder was developed for and deployed in an introduc-
tory CS course for non-technical majors at a large U.S. university.
This large-enrollment course (capped at 600 students) introduces
basic principles of programming in both Python and Excel to a
population largely without any prior programming experience. In
this paper, we report results from both the Fall 2019 and Spring
2020 semesters. The course is taken predominantly by freshmen
(67%) and sophomores (21%) and approaches gender balance (Fall
2019: 246 women/355 men; Spring 2020 258 women/307 men).

The autograding EiPE questions were deployed both on home-
work assignments during the first half of the semester and on
proctored computer-based exams in each semester. We present
results drawn only from student responses on exams because we
can be assured that those results represent serious attempts by the
students; we observed students attempting to “game the system” on
the low-stakes homework, as discussed in Section 3.1. In Fall 2019,
the EiPE questions appeared on a mid-term exam in the 12th week
and, in Spring 2020, the EiPE questions appeared on a mid-term
exam in the 6th week of the course. This discrepancy is due to the
technology still being refined during the Fall 2019 semester.

In both cases, we used the pool of EiPE questions deployed on the
homework during the 5th week of the course. Students took their
exams in a Computer-Based Testing Facility [44] over a three-day
period. To minimize the potential for cheating on these asynchro-
nous exams, we randomly assigned students questions from the
question pool on an individual basis [5]. Four of the problems in the
pool were not included on the exam because they were significantly
easier or harder than the rest.

In Fall 2019, students were given three attempts to submit a cor-
rect answer (the exam is graded interactively). Because we found
that these multiple attempts resulted in additional false positives [2],
in Spring 2020 we gave students a single attempt to answer the
question. The students in Fall 2019 submitted a total of 1,140 re-
sponses and the students in Spring 2020 submitted a total of 582
responses.

4.1 Training Data and Ground Truth

The autograders were initially trained with data from a series of
surveys. Each survey asked participants to provide two correct
responses and two plausible incorrect responses for each EiPE
question. These surveys were completed by the course’s instructor,
TAs, and a collection of upper-level CS students. Students were
compensated with Amazon gift cards. These surveys resulted in
approximately 100-200 responses per question. Survey data was
manually reviewed by a research team member to perform any
necessary re-categorization of the responses. Our binary scores
corresponded to 0-4 (incorrect) and 5-6 (correct) on a previously
validated scoring rubric [4].

Prior to deployment on the exam, two members of the research
team manually labeled the Fall 2019 students’ homework responses
to these questions and used that as additional training data to

improve the grader. The Al graders deployed on the exam were
trained with 500-600 labeled responses per question.

Once an exam was completed, two members of the research
team familiar with the course content scored each student response
as correct/incorrect independent of the Al grader’s score. Correct
responses must be correct at the relational level (non line-by-line
descriptions) and unambiguous. Responses were not penalized for
spelling or grammar as long as the intent was clear. If the two
scorers agreed on a response, this was considered the final ground
truth. For any disagreements between the scorers, ground truth was
established by a process of discussion and reconciliation between
both scorers and a third research team member until consensus
was reached. The inter-rater reliability of the two research team
members’ initial scores was a Cohen’s kappa of 0.83 (“almost perfect”
agreement [38]). Grades were manually adjusted for any students
who were incorrectly denied credit by the autograder.

4.2 Training human graders

Because members of the research team have scored thousands of
EiPE responses and spent tens of hours reconciling challenging
responses and developing a shared understanding of how to handle
corner-cases, our level of experience and interest in EiPE grading
far exceeds that of the teaching assistants (TAs) who would perform
manual grading in the context of a large-enrollment course. As such,
we perform our comparison to manual grading using an ecologically
valid population: the TAs for the Spring 2020 offering of the course
in which the data was collected. The eight TAs that participated
were all graduate students in computer science.

To investigate differences in experience, the eight TAs were split
into two groups of four (“Trained TAs” and “Minimally-trained
TAs”) for different training regimens. The TAs were unaware of
this split. IRB approval and TA consent were obtained for using
their grading results.

Trained TAs: The four TAs in the “Trained TAs” group were given
a joint 30-minute training session by a member of the research
group. The training consisted of explaining the scoring criteria (e.g.,
high-level, correct, and unambiguous) to them in detail and then
having them score example responses drawn from the Fall 2019 data
in multiple rounds. Each round, the TAs independently scored five
responses. Discrepancies between any of the TAs scores and the
research team’s ground truth scores were collectively discussed and
resolved before continuing on to the next round. There were four
such rounds; each round used responses from a different question
per round. We assigned the three returning Fall 2019 TAs to Group A
because they had some prior exposure to the EiPE questions during
that offering of the course.

Minimally-trained TAs: The four TAs in the “Minimally-trained
TAs” group were all new to the course. They were given only a
5-minute training session by the same member of the research
group, during which they were only shown the scoring criteria. No
examples were worked through or discussed.

TA grading: Following the training, all eight TAs scored a selection
of EiPE student responses from the Spring 2020 exam, without
access to either the ground truth or the model’s score. Each TA
received the same 100 responses for manual grading. The responses
were stratified to disproportionately sample responses that the

100 |

S [o)] o]
o o o
1 1 1

Mean Accuracy

N
o
1

o
I

Minimally-trained Autograder
TAs

Trained TAs

Figure 2: The mean accuracies with 95% confidence intervals
specified alongside the Spring 2020 model accuracy.

Trained TA 4

Trained TA 2
Minimally-trained TA 1
Trained TA 1
Autograder
Minimally-trained TA 4
Minimally-trained TA 2
Trained TA 3
Minimally-trained TA 3

T T
0 10 20 30 40 50 60 70 80 90 100
Grader Accuracy

Figure 3: The accuracy of the autograder is in the same ball-
park as the TAs (Spring 2020 data).

model struggled with; both False Negatives (FNs) and False Positives
(EPs). All the available FNs were sampled, while FPs were sampled
at about twice the rate of the True Postives (TPs) and True Negatives
(TNs). The TA responses were reweighed from the sample back
to the full population rates for each category. These results were
compared to the model’s performance on the Spring 2020 exam.

5 RESULTS

On the Fall 2019 exam, 67% of the students answered their EiPE
question correctly and the autograder achieved an accuracy of 89%,
with a 12% False Positive (FP) rate and a 9% False Negative (FN) rate.
In Spring 2020, 45% of the students answered their EiPE question
correctly and the autograder achieved an accuracy of 87%, with a
15% FP rate and a 10% FN rate. The model used a different threshold
for marking answers correct in Fall 2019 and Spring 2020. We found
that running Fall 2019’s responses using Spring 2020’s threshold
reduced accuracy from 89% to 88%.

Mean accuracies for the model, trained TAs, and minimally-
trained TAs are plotted in Figure 2. We did not find a statistically
significant difference between the model and TAs, regardless of
training. The model did perform about as well as three of our trained
TAs and outperformed all but one minimally trained TA. These
results, however, are not statistically significant because of the small
number of TAs (N = 4 in each case). The TAs’ individual accuracies
are sorted and plotted in Figure 3. Inter-rater reliability, F1 score,
and accuracy relative to the ground truth for each TA individually
are presented in Table 2.

Table 3 shows these results in the same metrics reported by the
best current results on publicly-available ASAG data sets shown
in Table 1. While clearly not directly comparable due to different
data sets, we note that our model is achieving higher accuracy in

Grader Accuracy « F1

Trained TA 1 93% 0.834 0.921
Trained TA 2 92% 0.831 0.920
Trained TA 3 87% 0.708 0.845
Trained TA 4 83% 0.626 0.766
Minimally-trained TA1 89% 0.776 0.889
Minimally-trained TA 2 84% 0.681 0.833
Minimally-trained TA3 85% 0.698 0.832
Minimally-trained TA 4 66% 0.383 0.689
Autograder model 87% 0.718 0.826

Table 2: Comparison of the trained TA, minimally-trained
TA, and Spring 2020 model performance.

Score type FA19 (12th week) SP20 (6th week)
r 0.748 0.725
QWK 0.740 0.718
accuracy (micro F1) 0.888 0.866
F1 0.820 0.826

Table 3: The autograder’s results for Fall 2019 and Spring us-
ing the metrics in Table 1. Bolded scores are higher than cor-
responding metrics in Table 1.

spite of the fact that it is much less sophisticated. As we discuss in
Section 6, we believe that this indicates that EiPE autograding is a
simpler task than ASAG in general.

To understand how much training data is needed to obtain a
reasonable Al grader and whether there is a qualitative difference be-
tween survey data and student homework data, we trained graders
with different subsamples of data and show the mean of the grader’s
performance on the Fall 2019 responses in Figure 4. There are three
sources of training data: (1) a subset of the survey data, (2) a subset
of the student homework data, and (3) both, meaning all of the
survey data and a subset of the student homework data. Although
more data consistently led to better performance, the student home-
work data seems qualitatively better than survey data, suggesting
that the course staff and senior students creating the survey data
were only somewhat able to generate realistic training data.

5.1 Characterizing Model Failure

Discussion of False Negatives: The model primarily struggles
with two types of questions. First, in binary conditionals (e.g., “Is a
number even?”), the model struggles with responses like “whether
the variable is even or odd”. This response has both a ‘correct’
keyword (even) and an ‘incorrect’ keyword (odd), which presents
conflicting signals to the autograder. Human graders however, re-
lying on colloquial English usage, would interpret such responses
as ‘(Returns) whether the variable is even (True) or odd (False)’, and
score them as correct.

Second, in bi-variate comparisons (“Max of two numbers”, “Is x a
factor of y?”) the autograder seems to struggle with recognition of
uncommonly used synonyms and syntax. For example, the answer
“returns the largest variable” is incorrectly marked wrong, but for
all such responses, when we change the word ‘variable’ to ‘number’,
then the model scores them as correct. These miscategorizations
seem to be due to few correct responses in the training data that use
the word ‘variable’. In addition, the model struggles with unnatural

e Survey data = Student homework data Both
0.90 -
- _
- 0.80 - =
oy
& 0.85 ~ ~
= -
g m 0.75
<
0.80 -+ 0.70 -+
T T T T
0 200 400 600 0 200 400 600

Number of training data samples per question

Figure 4: The performance of the Al grader on the 1,140 exam responses from Fall 2019, when trained on different combinations
of data with different sample sizes. Error bars are 95% confidence intervals.

phrasing; for example, in “return its smallest number” it is unclear
what “it” refers to. Minor typos, however, do not result in FNs.

Discussion of False Positives: We see both a larger number of
FPs (101 FPs vs 29 FNs) as well as more diversity in the types of
questions and responses that caused them. In general, as long as
the student response has the keyword or a set of crucial words that
appear in the training set of correct responses and does not have
the corresponding incorrect keyword (e.g. ‘odd” when looking for
‘even’), the model tends to score it as correct. Extra information
or word order leading to an incorrect meaning tend to be ignored.
This is likely due to our model using a bigram (+ bag-of-words)
approach. Bigrams are not able to capture negative signals when
negative signals are more than two words long and the bigrams in
that negative signal have also appeared in a correct answer. For this
high stakes exam deployment, we biased the model to avoid false
negatives [2]. While the FP rate at 12% is higher than we would
like, it should decrease with model improvement.

6 DISCUSSION

We were genuinely surprised that our very simple model performed
as well as it did. We initially intended the bag-of-words + bigrams
model to be a temporary model that we’d only use long enough in
order to collect additional training data, so that we could train a
more sophisticated model. Instead, we found that the model was
good enough to allow us to focus on other parts of introducing EiPE
questions in the course, including authoring additional questions
and implementing the garbage filter. Furthermore, we deemed it ac-
curate enough that we were willing to use it for interactive grading
on an exam, with the knowledge that we would manually re-grade
the student answers after the exam [2].

From these results it appears that automatically grading EiPE
questions may be a simpler task than other ASAG contexts. Even
using just bigrams, our results compare favorably with other ASAG
results using much more sophisticated algorithms. We believe that
this high accuracy is the result of specific elements of disciplinary
vocabulary (e.g., “count”, “even”) being effective markers of when
students have correct answers. We are optimistic that accuracy can
be further improved through the introduction of state of the art
ASAG techniques. Many of the errors that the model makes can be
attributed to its limited ability to exploit word ordering. A more
sophisticated model will likely require additional training data.

The data in Figure 4 supports the assertion that the current model
is not limited by the amount of training data. The model’s accu-
racy is almost constant once we reached 350 items in the training
set. Furthermore, it is not surprising that the student homework
responses were more effective than survey data for training the al-
gorithm to predict student exam responses. The surveys did enable
us to deploy the algorithm in the low stakes homework context to
collect that homework training data, but our conclusion is that we
could get by with fewer survey responses, especially if we were to
quickly score early homework responses and re-train the model.

Our current implementation’s accuracy is in the same ballpark
as our average course TAs, even after training. We believe that even
just using the state of the art ASAG techniques should enable an
algorithm to be competitive with even our most accurate TAs.

7 CONCLUSION

We believe this paper reports on the first instance of autograding
“Explain in Plain English” (EiPE) questions. It appears that auto-
grading EiPE questions is easier than the more general problem of
automatic short answer grading. By training a simple model (bag-
of-words + bigrams) using student homework responses to EiPE
questions, we were able to achieve similar accuracy in autograding
EiPE questions to manual grading by course TAs.

We believe that autograded EiPE questions have the potential
to significantly impact instruction in introductory programming
courses. Many researchers have advocated for a greater emphasis on
code reading activities, and automated EiPE activities can effectively
scale to even large enrollment CS 1 courses.

There are many directions for future work. First, recent advances
in ASAG and NLP more broadly should be introduced into the model.
Second, we suggest evaluating EiPE autograding on a broader range
of questions to better characterize how autograding accuracy varies
across questions and populations. Such an analysis might provide
insight into how to further improve the algorithm. Finally, once a
mature autograding EiPE system is available, it will be important
to identify best practices for adopting it into existing courses and
measuring the impact a larger emphasis on code reading has on
introductory programming instruction.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under grant numbers DUE-1347722 and DUE-1915257.

REFERENCES

(1]

[2

=

[10

[11]

(12

[13]

[14

[15]

[16]

(17

=
&

[19]

[20

Owen Astrachan and David Reed. 1995. AAA and CS 1: The Applied Appren-
ticeship Approach to CS 1. In Proceedings of the Twenty-sixth SIGCSE Technical
Symposium on Computer Science Education (SIGCSE "95). ACM, New York, NY,
USA, 1-5. https://doi.org/10.1145/199688.199694

Sushmita Azad, Binglin Chen, Maxwell Fowler, Matthew West, and Craig Zilles.
2020. Strategies for Deploying Unreliable AI Graders in High-Transparency High-
Stakes Exams. In International Conference on Artificial Intelligence in Education.
Springer, 16-28.

Steven Burrows, Iryna Gurevych, and Benno Stein. 2015. The Eras and Trends of
Automatic Short Answer Grading. International Journal of Artificial Intelligence in
Education 25,1 (01 Mar 2015), 60-117. https://doi.org/10.1007/s40593-014-0026-8
Binglin Chen, Sushmita Azad, Rajarshi Haldar, Matthew West, and Craig Zilles.
2020. A Validated Scoring Rubric for Explain-in-Plain-English Questions. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(SIGCSE).

Binglin Chen, Matthew West, and Craig Zilles. 2018. How Much Randomization
is Needed to Deter Collaborative Cheating on Asynchronous Exams?. In Learning
at Scale.

Michael J. Clancy and Marcia C. Linn. 1999. Patterns and Pedagogy. In The
Proceedings of the Thirtieth SIGCSE Technical Symposium on Computer Science
Education (SIGCSE *99). ACM, New York, NY, USA, 37-42.

Malcolm Corney, Sue Fitzgerald, Brian Hanks, Raymond Lister, Renee McCauley,
and Laurie Murphy. 2014. "Explain in Plain English’ Questions Revisited: Data
Structures Problems. In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education (SIGCSE °14). ACM, New York, NY, USA, 591-596.
http://doi.acm.org/10.1145/2538862.2538911

Malcolm Corney, Raymond Lister, and Donna Teague. 2011. Early Relational Rea-
soning and the Novice Programmer: Swapping As the "Hello World" of Relational
Reasoning. In Proceedings of the Thirteenth Australasian Computing Education
Conference - Volume 114 (ACE ’11). 95-104.

M. O. Dzikovska et al. 2013. SemEval-2013 task 7: The joint student response
analysis and eighth recognizing textual entailment challenge. In Proceedings of the
2nd joint conference on lexical and computational semantics, M. Diab, T. Baldwin,
and M. Baroni (Eds.). 1-12.

Hewlett Foundation. 2012. Automated student assessment prize: Phase two —
short answer scoring, Kaggle Competition.

Lucas Busatta Galhardi and Jacques Duilio Brancher. 2018. Machine Learning
Approach for Automatic Short Answer Grading: A Systematic Review. In Ad-
vances in Artificial Intelligence - IBERAMIA 2018, Guillermo R. Simari, Eduardo
Fermé, Flabio Gutiérrez Segura, and José Antonio Rodriguez Melquiades (Eds.).
Springer International Publishing, Cham, 380-391.

Fernand Gobet, Peter CR Lane, Steve Croker, Peter CH Cheng, Gary Jones, lain
Oliver, and Julian M Pine. 2001. Chunking mechanisms in human learning. Trends
in cognitive sciences 5, 6 (2001), 236—243.

Wael Hassan Gomaa and Aly Aly Fahmy. 2020. Ans2vec: A Scoring System for
Short Answers. In The International Conference on Advanced Machine Learning
Technologies and Applications (AMLTA2019), Aboul Ella Hassanien, Ahmad Taher
Azar, Tarek Gaber, Roheet Bhatnagar, and Mohamed F. Tolba (Eds.). Springer
International Publishing, Cham, 586-595.

Sarah J. Hatteberg and Kody Steffy. 2013. Increasing Reading Compliance of
Undergraduates: An Evaluation of Compliance Methods. Teaching Sociology 41,
4 (2013), 346-352. https://doi.org/10.1177/0092055X13490752

Vighnesh Iyer and Craig Zilles. 2021. Pattern Census: A Characterization of
Pattern Usage in Early Programming Courses. In Proceedings of the SIGCSE
Technical Symposium (SIGCSE).

Yaman Kumar, Swati Aggarwal, Debanjan Mahata, Rajiv Ratn Shah, Ponnu-
rangam Kumaraguru, and Roger Zimmermann. 2019. Get IT Scored Using
AutoSAS — An Automated System for Scoring Short Answers. Proceedings
of the AAAI Conference on Artificial Intelligence 33, 01 (July 2019), 9662-9669.
https://doi.org/10.1609/aaai.v33i01.33019662

Raymond Lister, Elizabeth S Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Mostrom, Kate Sanders, Otto
Seppald, Beth Simon, and Lynda Thomas. 2004. A multi-national study of reading
and tracing skills in novice programmers. ACM SIGCSE Bulletin 36, 4 (2004),
119-150.

Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a
Relationship Between Explaining, Tracing and Writing Skills in Introductory
Programming. In Proceedings of the 14th Annual ACM SIGCSE Conference on
Innovation and Technology in Computer Science Education (ITiCSE °09). ACM, New
York, NY, USA, 161-165. https://doi.org/10.1145/1562877.1562930

Tiaogiao Liu, Wenbiao Ding, Zhiwei Wang, Jiliang Tang, Gale Yan Huang, and
Zitao Liu. 2019. Automatic Short Answer Grading via Multiway Attention
Networks. arXiv:1909.10166 [cs] (2019). http://arxiv.org/abs/1909.10166

Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships between reading, tracing and writing skills in introductory program-
ming. In Proceedings of the Fourth International Workshop on Computing Education

[21

[22

[23

[24

[25

[26]

[27

&
2

[29

[30

[31

[32

(34

[35

[36

[37

[38

[39

[40

[41]

[42

[43

(44

Research. ACM, 101-112.

Ahmed Magooda, Mohamed A. Zahran, Mohsen Rashwan, Hazem M. Raafat, and
Magda B. Fayek. 2016. Vector Based Techniques for Short Answer Grading. In
FLAIRS Conference.

Alvarado Mantecon and Jesus Gerardo. 2019. Towards the Automatic Classifica-
tion of Student Answers to Open-ended Questions. Thesis. Université d’Ottawa /
University of Ottawa. https://doi.org/10.20381/ruor-23341

Sandra P Marshall. 1995. Schemas in problem solving. Cambridge University
Press.

Michael McCracken et al. 2001. A Multi-national, Multi-institutional Study of
Assessment of Programming Skills of First-year CS Students. In Working Group
Reports from ITiCSE on Innovation and Technology in Computer Science Education
(ITiCSE-WGR "01). ACM, New York, NY, USA, 125-180.

Katherine B McKeithen, Judith Spencer Reitman, Henry H Rueter, and Stephen C
Hirtle. 1981. Knowledge organization and skill differences in computer program-
mers. Cognitive Psychology 13, 3 (1981), 307-325.

M. Mohler, R. Bunescu, and R. Mihalcea. 2011. Learning to grade short answer
questions using semantic similarity measures and dependency graph alignments.
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. 752-762.

Laurie Murphy, Renée McCauley, and Sue Fitzgerald. 2012. "Explain in Plain
English’ Questions: Implications for Teaching. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education (SIGCSE ’12). ACM, New
York, NY, USA, 385-390. https://doi.org/10.1145/2157136.2157249

Ifeanyi G. Ndukwe, Ben K. Daniel, and Chukwudi E. Amadi. 2019. A Machine
Learning Grading System Using Chatbots. In Artificial Intelligence in Education
(Lecture Notes in Computer Science). Springer International Publishing, Cham,
365-368.

Bertram Opitz, Nicola K Ferdinand, and Axel Mecklinger. 2011. Timing matters:
the impact of immediate and delayed feedback on artificial language learning.
Frontiers in human neuroscience 5 (2011), 8.

Alexander Renkl, Robin Stark, Hans Gruber, and Heinz Mandl. 1998. Learning
from Worked-Out Examples: The Effects of Example Variability and Elicited
Self-Explanations. Contemporary educational psychology 23 (01 1998), 90-108.
https://doi.org/10.1006/ceps.1997.0959

Robert S Rist. 1989. Schema creation in programming. Cognitive Science 13, 3
(1989), 389-414.

Swarnadeep Saha, Tejas I. Dhamecha, Smit Marvaniya, Renuka Sindhgatta, and
Bikram Sengupta. 2018. Sentence Level or Token Level Features for Automatic
Short Answer Grading?: Use Both. In Artificial Intelligence in Education (Lecture
Notes in Computer Science). Springer International Publishing, Cham, 503-517.
Chul Sung, Tejas Indulal Dhamecha, and Nirmal Mukhi. 2019. Improving Short
Answer Grading Using Transformer-Based Pre-training. In Artificial Intelligence
in Education. Vol. 11625. Springer International Publishing, Cham, 469-481.
Neslihan Suzen, Alexander Gorban, Jeremy Levesley, and Evgeny Mirkes. 2019.
Automatic Short Answer Grading and Feedback Using Text Mining Methods.
CoRR (2019). http://arxiv.org/abs/1807.10543 arXiv: 1807.10543.

John Sweller. 2011. Cognitive Load Theory. In Psychology of learning and
motivation. Vol. 55. Elsevier, 37-76.

John Sweller, Jeroen JG Van Merrienboer, and Fred GWC Paas. 1998. Cognitive
architecture and instructional design. Educational psychology review 10, 3 (1998),
251-296.

Anne Venables, Grace Tan, and Raymond Lister. 2009. A Closer Look at Tracing,
Explaining and Code Writing Skills in the Novice Programmer. In Proceedings of
the Fifth International workshop on Computing Education Research. ACM, 117-128.
Anthony J Viera, Joanne M Garrett, et al. 2005. Understanding interobserver
agreement: the kappa statistic. Fam med 37, 5 (2005), 360-363.

Jacqueline Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Robbins,
P K Ajith Kumar, and Christine Prasad. 2006. An Australasian study of Reading
and Comprehension Skills in Novice Programmers, using the Bloom and SOLO
Taxonomies. Eighth Australasian Computing Education Conference (ACE2006)
(2006).

Susan Wiedenbeck. 1985. Novice/expert differences in programming skills.
International Journal of Man-Machine Studies 23, 4 (1985), 383 — 390. https:
//doi.org/10.1016/S0020-7373(85)80041-9

Leon E. Winslow. 1996. Programming Pedagogy— a Psychological Overview.
SIGCSE Bull. 28, 3 (Sept. 1996), 17-22. https://doi.org/10.1145/234867.234872
Benjamin Xie, Dastyni Loksa, Greg L Nelson, Matthew J Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Andrew] Ko. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education 29, 2-3 (2019), 205-253.

Xi Yang, Yuwei Huang, Fuzhen Zhuang, Lishan Zhang, and Shengquan Yu. 2018.
Automatic Chinese Short Answer Grading with Deep Autoencoder. In Artificial
Intelligence in Education (Lecture Notes in Computer Science). Springer Interna-
tional Publishing, Cham, 399-404.

Craig Zilles, Matthew West, Geoffrey Herman, and Timothy Bretl. 2019. Every
university should have a computer-based testing facility. In Proceedings of the
11th International Conference on Computer Supported Education (CSEDU).

https://doi.org/10.1145/199688.199694
https://doi.org/10.1007/s40593-014-0026-8
http://doi.acm.org/10.1145/2538862.2538911
https://doi.org/10.1177/0092055X13490752
https://doi.org/10.1609/aaai.v33i01.33019662
https://doi.org/10.1145/1562877.1562930
http://arxiv.org/abs/1909.10166
https://doi.org/10.20381/ruor-23341
https://doi.org/10.1145/2157136.2157249
https://doi.org/10.1006/ceps.1997.0959
http://arxiv.org/abs/1807.10543
https://doi.org/10.1016/S0020-7373(85)80041-9
https://doi.org/10.1016/S0020-7373(85)80041-9
https://doi.org/10.1145/234867.234872

	Abstract
	1 Introduction
	2 Related Work
	2.1 ``Hierarchy'' of programming skills
	2.2 Automatic short answer grading (ASAG)

	3 Autograded EiPE questions
	3.1 The EiPE autograder

	4 Methods
	4.1 Training Data and Ground Truth
	4.2 Training human graders

	5 Results
	5.1 Characterizing Model Failure

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

