Superficial Code-guise: Investigating the Impact of Surface
Feature Changes on Students’ Programming Question Scores

Max Fowler
University of Illinois
Urbana, IL, USA
mfowler5@illinois.edu

ABSTRACT

Assessing student performance on programming questions is im-
portant for introductory computer science courses, both for student
learning and for ensuring students demonstrate competence. Part
of being a competent programmer includes the ability to transfer
learning from solved to analogous problems. Additionally, particu-
larly in computer-based and online assessment, mitigating cheating
efforts is another important consideration. One way to mitigate
cheating is by randomly selecting from large pools of equivalent
questions.

In order to produce large pools of questions quickly, we used a
permutation strategy to rapidly make new question variants by al-
tering existing questions’ surface features. In this work, we present
the results of our first set of surface feature permuted questions in
an introductory Python course. We find surface feature permuta-
tions to be an effective way to produce questions of a similar diffi-
culty to other new questions for students while mitigating potential
cheating. However, we also see permutations expose potential stu-
dent knowledge fragility and transfer concerns, as performance
on permutations of homework questions is not strictly better than
performance on questions that are entirely new on assessments.

CCS CONCEPTS

« Social and professional topics — CS1; Student assessment.

KEYWORDS

CS1, introductory computer science, online assessment, program-
ming surface features

ACM Reference Format:

Max Fowler and Craig Zilles. 2021. Superficial Code-guise: Investigating the
Impact of Surface Feature Changes on Students’ Programming Question
Scores. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education (SIGCSE °21), March 13-20, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3408877.3432413

1 INTRODUCTION

Assessing student performance is a key component of education.
Not only is it an important tool for determining student success, well

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE °21, March 13-20, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8062-1/21/03...$15.00
https://doi.org/10.1145/3408877.3432413

Craig Zilles
University of Illinois
Urbana, IL, USA
zilles@illinois.edu

crafted assessments can also provide direct learning benefits [16,
24, 38]. Of particular interest is how students perform on new
questions they should have learned the solution to: that is, new
questions with analogous solutions to questions students have
already solved. Students’ success on analogous problems may also
indicate where students suffer from fragile knowledge, lacking the
depth of understanding needed to transfer what they already “know”
to analogous problems [3].

However, for assessments to be most effective, some care must
be taken to mitigate cheating. This is particularly true in computer-
based and online testing environments, in which students both
perceive more ability to cheat and self-report cheating at a higher
rate [8, 40]. One way to potentially mitigate student cheating efforts
is to use randomized question pools in the construction of assess-
ments, thereby building variance into the assessments students
receive and reducing the chance of unauthorized collaboration and
answer copying from other sources. Building a large enough ques-
tion pool for randomization can be a challenge, particularly for the
assessment of students’ programming skill in introductory com-
puter science. Writing question prompts that necessitate students
answering programming prompts with small code snippets or small,
custom functions is a non-trivial task.

In order to find an efficient way to produce sets of programming
questions for creating large random pools on online assessments
while still allowing students to see problems similar to previously
solved ones, the research team implemented a structured process to
create question variants through the application of surface feature
permutations. Specifically, new permuted variants are written based
on existing questions by changing their surface features, the specific
elements of a problem such as variable name and data type, without
significant structural change to possible programming solutions.
We aim to answer the following research questions:

e RQ1: Does surface feature permutation produce question
variants of similar difficulty to their base forms?

e RQ2: Does surface feature permutation create sufficient vari-
ants to mitigate cheating?

The rest of the paper is organized as follows. In Section 2, we
briefly address related work. Section 3 is dedicated to the permuted
questions written in the study, and Section 4 provides the context
for the data collection. We present results in Section 5 and discuss
them in Section 6. Limitations are addressed in Section 6.5. Finally,
we conclude.

https://doi.org/10.1145/3408877.3432413
https://doi.org/10.1145/3408877.3432413

2 RELATED WORK

2.1 Question surface features and knowledge
fragility
Novices, in fields from physics [7] and math [20] to computer engi-
neering and computer science [9, 19, 21, 30, 33], have been known
to struggle with questions’ surface features due to lacking the en-
coding of experts. For example, Johnson-Glauch et al. found digital
logic students conflated inputs and circuit states due to their shared
position in a table, attending more to location than what the in-
formation was [21] and Ichinco and Kelleher found that experts
attended to and recalled structural information and meaning more
than novices when recalling memorized code snippets [19]. Novices
may also attend to the wrong information in a problem or struggle
to focus on relevant details. Eye-tracking studies in novice pro-
grammers show novices tend to have a linear focus, rather than an
execution order or pattern-based focus as found in experts [4, 34].
There is some existing literature on the effect of surface features
on students’ performance on questions. Hernandez et al. found
surface feature-born confusion to be consistent and pervasive in a
physics course between electricity and magnetism questions [17].
Weston et al. investigated surface features’ impacts on students
tracing photosynthesis reactions [42]. Students luckily did deter-
mine the prompt was the important part of these questions, rather
than the specific plant and how the plant details were presented,
but were confused by and led astray by the word “process”.
Related to this surface feature focus is the concept of knowledge
fragility [3]. Knowledge fragility is one of the reasons Kennedy and
Kraemer present for misconceptions in introductory computer sci-
ence [22]. Luxton-Reilly and Petersen found this to be particularly
troublesome in cases where knowledge fragility compounds with
multiple concepts in a question [26].

2.2 Transfer and problem solving

Students’ ability to transfer previous learning to new problems is of
relevance. Bassok describes problem-solving transfer as the process
by which students are reminded of a previous problem and retrieve
that problem’s solution to solve a novel problem. Key to transfer’s
success is how similar the original and new problem are to each
other: that is, if the problems are analogous [1]. Structural-mapping
theory draws a distinction between problems’ surface features and
structures, where structural similarity allows for successful transfer
between problems [1, 14]. Despite structural similarity being more
useful for the successful application of analogical solutions, both
structural and surface features of problems contribute to students’
selection of potential solutions [18].

Some work has looked at how to structure content for analogical
transfer in computer science. Muller’s pattern-oriented instruc-
tion (POI) was based around helping students perform analogical
transfer by explicitly instructing students in reusable algorithmic
patterns [29]. Haberman and Muller present POI and abstract data
type based approaches to teaching abstraction. One of the difficul-
ties students faced was distraction with surface features leading
to incorrect selection of patterns [15]. Enstrém considers how POI
can help students with dynamic programming problems [12].

Transfer research in computer science also considers conceptual
transfer between natural language and mathematics concepts and
computer science problem solving, especially in regards to where
students struggle with differences in definition and behavior [2,
31, 35]. More recently, work has begun to investigate how novices
transfer between their first and second programming language, as
well [37].

2.3 Cheating and cheating mitigation

Student cheating is a well documented phenomenon. The Fraud
Triangle Theory suggests that choosing to cheat requires three
factors: perceived incentive to cheat, perceived opportunity to cheat,
and rationalization of the act [11]. Feinman [13] provides a detailed
literature review on proctoring and cheating; here, we highlight a
few examples of student cheating and mitigation strategies. Myriad
studies show a significant body of students admitting to cheating
in online assessment, with students self-report cheating at a higher
rate [23, 36, 39, 40]. There is also a perception that cheating is
easier in online and electronic exam contexts, although also that
some fraud detection may be easier in such environments [8]. In
addition, students may exhibit a “learning to cheat” behavior if
repeated exposure to an insecure testing environment increases the
perceived opportunity to cheat [5].

Proctoring is one obvious way to dissuade cheating behavior [28].
Authorship checks are another way to dissuade some forms of cheat-
ing, although may still be ineffective at catching students sharing
materials [27]. Honor codes and fostering good campus moral cul-
ture are shown to decrease the amount students cheat [28, 32], al-
though are not as effective as stern warnings [10] in online contexts.
Finally, question pool randomization is shown to have some mitigat-
ing impact on cheating and is pursued both through large question
pools and through algorithmic question generation [5, 6, 25, 28].

3 SURFACE FEATURE PERMUTATIONS

This paper analyzes a collection of questions with surface feature
permutations that were written during the Spring 2020 semester.
We detail the development process below.

First, we defined a set of surface feature permutations. These
permutations were decided by the research team based on what
details of a problem we could change such that the surface details
were different without significantly impacting the structure the
question’s solution code would require. Table 1 gives a list of the
surface features and a description of what the permutation entailed.
Keys were used to mark which permutations a given question
variant has applied.

After deciding on permutations to use, we selected a set of base
questions. Base questions are the questions the permuted variants
are created from. These were selected both from existing questions
from Fall 2019 and new questions written in Spring 2020. Further,
some base questions were used on homework assignments in the
Spring, while other base questions were “hidden” questions - that
is, questions that only appeared on exams.

Variants were created by selecting which permutations were
given to which base questions. A variant could have 1-3 permuta-
tions applied at once. Because not every permutation is applicable to
every base question, permutations were not uniformly distributed

Table 1: The surface feature permutations used for question
development in Spring 2020. While not ordered on empirical
study, they are listed in the research team’s perception of
loosely ascending order of complexity. This complexity is in
terms of the surface change’s impact on the base question’s
prompt.

Permutation Key Description
Base None The base form of a question.
Var Name Change \4 Change the name of parameters

used in a question prompt.
Change the name of the func-
tion to be written in a question
prompt.

Swap the order of parameters in
a function.

Add a function prototype to a
prompt without one.

Remove the provided function
prototype from a prompt.
Change constants involved in
a prompt, e.g., “first 5 elements
...” to “first 3 elements ...”.
Change question “polarity” e.g.,
“positive numbers” to “negative
numbers”, “first” to “last”.
Change the data types of one or
more parameters, e.g., strings to
lists.

Function Name Change F

Order Swap (¢}
Prototype Added A
Prototype Removal R

Constant Change C

Polarity Reverse P

Data Type Change D

during the semester or on each assessment. The count of how many
times a permutation appeared in a given assessment and what base
type they had is shown in Table 2.

To provide an example of the permutation writing process, we
present an examples of two bases and two permuted variants below.
Note that the permuted variant features each permutation’s keys
in the question name in order to track which features were per-
muted. The surface features which change between the questions
are italicized and bolded and function prototypes, when provided,
are marked with an asterisk:

progAddLastThreeOfList: Create a function called
sum_last_three that takes a single argument of type
list of numbers. Your function should return the sum
of the last three elements of the given list. You can
assume that the list always has at least three elements.
progAddLastThreeOfList_PC: Create a function called
sum_{first_five that takes a single argument of type
list of numbers. Your function should return the sum
of the first five elements of the given list. You can
assume that the list always has at least five elements.

progCondStringIsSingleLetter: In the function be-
low, return True if the input string parameter consists
of a single lowercase letter; otherwise, return False.
*def is_a_single_letter(string_arg):

progCondStringlIsSingleLetter_VF: In the function
below, return True if the input string parameter con-
sists of a single lowercase letter; otherwise, return
False.

* def typographic_checker(word):

4 COURSE CONTEXT AND DATA

All questions were developed for and deployed in a large enrollment
(capped at 600), introductory, non-major CS course at a large U.S.
university. The course is focused on basic programming principles
in Python and Excel. Students in the course typically do not have
prior experience in programming. Our questions were developed
and deployed in the Spring 2020 semester. The course’s student
population is predominantly freshmen (67%) and sophomores (21%)
and is reasonably gender balanced (258 women/307 men).

Summative assessment takes the form of exams and quizzes.
With COVID-19, both quizzes and exams were online and self-
proctored, but quizzes were asynchronous and lower stakes and
exams were synchronous and higher stakes. When referring to a
specific assessment, we will use quiz # or exam #, but otherwise we
generalize to exam. All of these exams, as well as student homework,
were deployed using the online platform PrairieLearn [41].

All programming questions, whether or not they were permuted,
were one of two types. Questions are called homework questions if
they appeared first on homework in the course. In this course, some
fraction of the exam questions were drawn from the homework to
motivate students to understand the homework. Questions which
appeared for the first time on exams are called hidden questions.
This technically includes all permuted variants, but does not include
all bases. Further, appearing on an exam once does not preclude
questions from appearing on later exams. In order to reduce the
likelihood of students being able to memorize exact answers, collab-
orate with classmates, or copy from a saved list of answers, exams
are written using question pools. Each student receives a random
question from each pool when their exam is constructed. Partial
credit is assigned by automated test cases and multiple attempts
are given to students to complete questions for a reduced number
of points on each attempt.

The programming questions in this study were deployed in two
fashions during the Spring semester. First, the majority (n = 29) of
base questions used were part of students’ formative homework
assignments. Following deployment of base questions on home-
work, surface feature permutations of these questions appeared on
subsequent exam question pools. The first base question appeared
on a homework in the 4th week, while the first use of a permuted
question was on an exam in the course’s 6th week.

The second deployment condition for questions was less com-
mon (n = 15), where base questions were deployed for the first time
on exams rather than on homework. In this case, the base questions
are just as hidden as the surface permuted variants of the questions.
While every student had access to every homework deployed base
question, not all students would have seen each hidden base and
permuted question during the semester because students receive
different draws from question pools.

Table 2: The amount of times each permutation appears in a random question pool on a given assessment, as well as how
many bases appear and the total number of questions with that permutation. Quiz 1 (Q1) and Exam 0 (E0) are omitted, as they
did not have any permuted questions. The table also gives the count for how many were based on homework questions versus

hidden questions.

Permutation El Q2 E2 Q3 E3 Q4 E4 Total Homework Based Hidden Based
Base 9 14 12 25 16 25 35 44 29 15

Var Name Change 4 3 1 4 1 4 10 11 6 5

Function Name Change 6 3 3 5 2 5 19 21 15 6

Order Swap 3 3 0 2 1 2 6 8 3 5

Prototype Added 2 0 1 2 1 2 7 7 6 1

Prototype Removal 3 3 1 5 0 5 9 12 5 7

Constant Change 4 2 5 5 1 5 21 21 13 8

Polarity Reverse 7 4 4 7 1 7 18 21 11 10

Data Type Change 0o 0 1 8 2 8 16 16 12 4

Of the almost 37,000 programming question submissions this
semester, 22,454 submissions were collected from just the questions
used for feature permutation. There are a total of 213 questions in
the exams’ question pools: 14% are homework base questions, 22%
are permutations of homework bases, 7% are hidden base questions,
17% are permutations of hidden bases, and the remaining 40% are
questions that don’t have permutations. Student scores are reported
on a scale from 0 (no credit) to 1 (full credit).

5 RESULTS

5.1 Homework base questions always have
higher average scores

Our first observation is that base questions from the homework
pools have the highest average score compared to hidden bases
and variants to a statistically significant degree. Figure 1 shows
the average score out of 1 for four types of questions: homework
bases, their permutations, hidden bases, and their permutations.
The questions are bucketed by permutations. A Kruskal-Wallis test
was used to check if there were significant differences between the
buckets for each permutation. All permutations reported p < 0.001,
indicating that each bucket was significantly different from at least
one other bucket.

Permuted

Permuted
W (Hidden)

BN Homework WS (homework)

BN Hidden

Average score by permutation bucket

Average score
o o =
wt -~ (=]
S = IS

! !

o

o

S
)

o

o

S
|

Var
Name
Change

Order
Swap

Data
Type
Change

Function
Name
Change

Prototype Prototype Constant Polarity
Added Removal Change Reverse

Figure 1: The average score by surface feature bucket with
95% confidence intervals. Questions previously used on
homework always had a higher average score.

5.2 Only some permutations have a significant
impact on student performance

Our second observation is that only some permutations have a
significant impact on a student’s ability to get a question correct.
The permutations whose regression coefficients were significant
are marked in 2. Specifically, we find Order Swap, Polarity Reverse,
and Data Type Change decrease and Prototype Removal increases a
student’s chance of getting a question correct. We find this result
by fitting a logistic regression model to our data. The model is writ-
ten in terms of the surface features permuted, whether questions
were used as bases, whether questions were homework or hidden
questions, and the anonymized student to whom the submission
belongs. Our model, over all submissions, is detailed below:

m t n
c=o Zaisi +Zz¢kpkj +Bq;
i=1 k=1j=1

In the formula above, o is the logistic function, m is the total
number of students, n is the total number of questions, and t is
the total number of permutation types. We enumerate the model’s
inputs, output, and resulting regression coeflicients below:

(1)

e Givens
— s;: the student the submission belongs to
- gj: a categorical combination of the question’s base and
whether that base was hidden (0 or 1) in the form base_hidden,
e.g. the question progAddLastThreeOfList_PC’s g is
progAddLastThreeOfList_1
- pkj: whether question j has permutation k applied
— ¢: Whether or not a particular question submission was
correct, 0 or 1
e Regression Coefficients
- a: an estimate of a given student’s ability
— ¢: permutation k’s estimated impact on question difficulty
— p:the estimated difficulty for question j’s base and whether
j was hidden

It is not straightforward to translate ¢ directly into student per-
formance. To better estimate their impact on average student perfor-
mance we used our regression model to predict whether a random
student would get a question correct with and without a specific
permutation. We found that the change in probability of submitting

Average correctness chance change by permutation
5.0
*%
0.0 1 ——
T

T T T T T T T
Var Function Order Prototype Prototype Constant Polarity Data
Name Name Swap Added Removal Change Reverse Type

Change Change Change

Correctness chance change

Figure 2: The predicted change in correctness chance with a
given permutation applied. The permutations with signifi-
cant regression coefficients are marked, with p <0.01 (*) and
P <0.001 (**).

a correct answer to a question based on the surface features per-
muted is <=+9%. Figure 2 plots the average change in correctness
by permutation. Each bar represents an average over 100 simulated
question sets.

5.3 Permutations have a more dramatic impact
when we consider only one kind of base

We were curious how specific permutations predicted student cor-
rectness if we only considered one kind of base. We split the data
into two sets and then refit our regression model on both sets.
From the first set, we removed all homework questions and their
permutations. From the second set, we removed all hidden bases
and their permutations and all homework questions but not their
permutations. This makes it a set of all hidden questions where
permutations were only applied to homework questions. We again
predict the chance in correctness with these two smaller models.

Permutations have the most dramatic effect on students’ correct-
ness when applied to homework questions. Figure 3 presents the
estimated correctness change averages with significant regression
coefficients marked. The majority of changes to correctness chances
remain fairly small in each split, at <=+11%. However, the split does
present interesting directional shifts from the full question set: hid-
den based Var Name Change, Function Name Change, and Prototype
Added questions are harder to get correct than their base, rather
than easier as indicated by Figure 2.

There are some startling impacts with the permutations of home-
work based questions, specifically Order Swap’s 23% chance de-
crease and Data Type Change’s 15% chance decrease in getting a
permuted question correct. Additionally, when split, we see Con-
stant Change has a larger impact on predicted correctness than
when the model is fit on all the data.

6 DISCUSSION AND LIMITATIONS
6.1 Permutations are mostly neutral as far as
question difficulty

Our first takeaway from the results is that the permutations are
mostly neutral in their impact on question difficulty. If we consider

Correctness chance changes split by base type

54 I Hidden Based

B Homework Based
* %
| I I- .
75 -
—25 T T

T T T T T T
Var Function Order Prototype Prototype Constant Polarity Data
Name Name Swap Added Removal Change Reverse Type

Change Change Change

Correctness chance change

Figure 3: Predicted correctness changes when base condi-
tions are split, with regression coeflicient significance indi-
cated (p < 0.01 (*) and p < 0.001 (**)).

just the hidden bases, this neutrality is shown in the averages from
Figure 1, where the averages of hidden bases and their permutations
are close together. We also saw this neutrality when predicting the
change in submission correctness, as the impact on correctness from
each permutation was only <=+9%. Even when only considering
hidden questions only, the chance was still <=+11%.

This answers RQ1 in that, when questions are in the same con-
dition (hidden), permutations do not appreciably affect difficulty in
aggregate. In general, if we change a problem in a small way, the
variant remains about as difficult.

6.2 Homework questions are much easier than
others - exposure or cheating?

We see base questions from homework have higher performance
across the board than other types of questions. Given permuta-
tions do not appreciably impact question difficulty in Section 6.1,
these higher average scores likely have a different explanation than
“permutations make these questions difficult.”

The higher average score on homework base questions could
indicate an exposure effect. Students may have practiced a number
of times on these specific questions in the process of doing their
homework and preparing for exams. It is also generally easiest to
perform an already completed task again than a new task. As such,
the high average score may be a result of experience with these
specific questions.

The other possible explanation is that some students may have
cheated. The exams were online due to COVID-19, increasing the
ability for students to access lists of their previous answers. Further,
quizzes in particular are asynchronous, which further opens the
door to not only accessing an answer list, but also unauthorized
collaboration between students who finished the quiz and students
who had not yet taken the quiz.

6.3 Prototype Removal may be easy to cheat

With respect to RQ2, only one permutation consistently increased
the likelihood a student would get a question correct regardless of if
we used all the data or split our data: Prototype Removal. We believe
this permutation may specifically be an easy permutation to cheat

on in our data set. Of the 12 questions with Prototype Removal as a
permutation, 5 of them only had the prototype removed and another
3 of them only had the prototype removed and function name
changed. This would have been trivial for any student with access
to a list of answers or a classmate to copy-and-paste an answer
in. As such, we do not believe Prototype Removal is particularly
successful cheating deterrence.

6.4 Some permutations may stop cheating or
indicate fragile learning

The results are not all discouraging in regards to RQ2. Order Swap,
Constant Change, Polarity Reverse, and Data Type Change all have
negative regression coefficients and deccrease the chance of a stu-
dent getting a question correct. This impact is more dramatic when
we consider only questions with the same base condition, partic-
ularly homework based permutations as seen in Figure 3. This
supports Figure 1, particularly in how much lower the homework
based permutations’ averages are compared to their base questions.
If students were attempting to cheat on these questions, it appears
that these particular permutations did help thwart those efforts.

These results potentially paint a concerning picture with respect
to student learning for some students. Ideally, students who mas-
tered homework questions would be able to transfer their knowl-
edge to those questions’ permutations. This does not seem to be
the case with the “more complex” surface feature permutations
of Constant Change, Polarity Reverse, and Data Type Change, as
these permutations always reduced submission correctness chance.
This is also supported by the score difference between the base and
permutations for homework bases versus the smaller gap between
hidden bases and their permutations for these three surface features
in Figure 1. For these permutations, permuted homework questions
were functionally just as difficult to students for these surface fea-
tures as the hidden bases. We are unwilling to claim Order Swap’s
results could imply fragile knowledge given the significantly large
error bar homework based questions have.

6.5 Limitations

The current work has some clear limitations. The nature of question
development leads to a few core issues. Firstly, the permutations
are not equally represented across the question set used in the
various course assessments, both within a given assessment as well
as across the semester. Part of this is due to the course content, as
permutations like Data Type Change were better suited for later
content. While the research team tried to write enough questions
for each permutation to be represented at least 10 times, we failed
in the case of Order Swap and Prototype Added due to few questions
featuring multiple arguments or lacking prototypes at first. Some
permutations which are easier to feature, such as Var Name Change,
were also underrepresented.

As question variants could feature multiple surface feature per-
mutations, the question set also did not guarantee that permutations
appeared both individually and with other permutations in rela-
tively equal amounts. To better be sure of the impact individual
changes have on questions, it would have been preferable to have
a better spread of variants which permute a single surface feature.

This also would have helped address some of the underrepresented
permutations in the question set.

The data collected here does not conclusively give us the rea-
son why students did worse on permutations of questions than on
homework questions. The driving factor could be being a hidden
question or it could be that we missed some impact of the permuta-
tions because all of the variants appear only on exams. In a future
semester, we would like to swap questions such that permutations
appear on homework and their bases appear on exams. This can
help further tease out if there is an actual difference in difficulty
between these homework bases and the surface feature variations
or if a question being hidden is the prime decider of student perfor-
mance. Having a small group of students complete a base question,
then a permutation of that question, in an interview setting would
also be valuable. These interviews would let us qualitatively analyze
what knowledge students retain from the base question and what
parts of a surface feature change cause students difficulty.

7 CONCLUSION

We present the results of using surface feature permutations to pro-
duce larger randomized programming question pools on computer-
based and online assessments. From the results, it appears that
specific surface feature changes do not produce questions appre-
ciably more difficult than other new hidden questions in random
pools. It also appears that surface feature permutation is gener-
ally effective at thwarting simple memorization or answer list use
on the part of students to cheat. However, these results may also
point to novice knowledge fragility, as in some instances permut-
ing homework questions still produces student performance in the
same range as regular hidden questions.

Future work avenues are abundant. For starters, running a sim-
ilar study with more numerically equivalent permutation counts,
more single permutation variants, and variance in terms of allowing
for permuted questions to appear on homework can help further
clarify permutations’ impacts on question difficulty. Following up
from that, qualitative analysis to investigate why students may
struggle to complete permutations of questions they have already
seen can help elucidate how students learn coding snippets and pro-
gramming solutions. Finally, it would be interesting to see the same
permutation process applied in other classes, both Python-based
(for replication) and those using other languages (to investigate the
transferability of these permutation strategies to other languages).

ACKNOWLEDGMENTS

We thank the graduate students of the Computing Education Re-
search group at the University of Illinois at Urbana-Champaign
and Profs. Geoffrey Herman, Colleen Lewis, Karrie Karahalios, and
Matthew West for their feedback on the analysis and multiple drafts
of the paper.

REFERENCES

[1] Miriam Bassok. 2003. Analogical Transfer in Problem Solving. Cambridge Univer-
sity Press, 343-370. https://doi.org/10.1017/CB0O9780511615771.012

[2] Jeffrey Bonar and Elliot Soloway. 1985. Preprogramming Knowledge: A Major
Source of Misconceptions in Novice Programmers. Human—Computer Interaction
1,2 (1985), 133-161. https:/doi.org/10.1207/515327051hci0102_3

https://doi.org/10.1017/CBO9780511615771.012
https://doi.org/10.1207/s15327051hci0102_3

=

[10

[11

[12]

[13

[14]

[16]

[17]

[20]

[21]

[22

[23]

[24]

Guy Brousseau and Michael Otte. 1991. The Fragility of Knowledge. In Math-
ematical Knowledge: Its Growth Through Teaching, Alan J. Bishop, Stieg Mellin-
Olsen, and Joop Van Dormolen (Eds.). Springer Netherlands, Dordrecht, 11-36.
https://doi.org/10.1007/978-94-017-2195-0_2

T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte, B. Sharif,
and S. Tamm. 2015. Eye Movements in Code Reading: Relaxing the Linear Order.
In 2015 IEEE 23rd International Conference on Program Comprehension. 255-265.
Binglin Chen, Sushmita Azad, Max Fowler, Matthew West, and Craig Zilles. 2020.
Learning to Cheat: Quantifying Changes in Score Advantage of Unproctored
Assessments Over Time. In Proceedings of the Seventh ACM Conference on Learning
@ Scale (Virtual Event, USA) (L@S °20). Association for Computing Machinery,
New York, NY, USA, 197-206. https://doi.org/10.1145/3386527.3405925

Binglin Chen, Matthew West, and Craig Zilles. 2018. How Much Randomization
is Needed to Deter Collaborative Cheating on Asynchronous Exams?. In Proceed-
ings of the Fifth Annual ACM Conference on Learning at Scale (London, United
Kingdom) (L@S ’18). Association for Computing Machinery, New York, NY, USA,
Article 62, 10 pages. https://doi.org/10.1145/3231644.3231664

Michelene T. H. Chi, Paul J. Feltovich, and Robert Glaser. 1981. Categorization
and Representation of Physics Problems by Experts and Novices*. Cognitive
Science 5, 2 (1981), 121-152. https://doi.org/10.1207/s15516709c0g0502_2
Aparna Chirumamilla, Guttorm Sindre, and Anh Nguyen-Duc. 2020. Cheating in
e-exams and paper exams: the perceptions of engineering students and teachers
in Norway. Assessment & Evaluation in Higher Education 0, 0 (Jan. 2020), 1-18.
https://doi.org/10.1080/02602938.2020.1719975

Michael J. Clancy and Marcia C. Linn. 1999. Patterns and Pedagogy. In The
Proceedings of the Thirtieth SIGCSE Technical Symposium on Computer Science
Education (New Orleans, Louisiana, USA) (SIGCSE ’99). ACM, New York, NY,
USA, 37-42. https://doi.org/10.1145/299649.299673

Henry Corrigan-Gibbs, Nakull Gupta, Curtis Northcutt, Edward Cutrell, and
William Thies. 2015. Deterring Cheating in Online Environments. https:
//doi.org/10.1145/2810239

Donald R. Cressey. 1950. The Criminal Violation of Financial Trust. American
Sociological Review 15, 6 (1950), 738-743.

E. Enstrom. 2013. Dynamic programming - Structure, difficulties and teaching.
In 2013 IEEE Frontiers in Education Conference (FIE). 1857-1863. https://doi.org/
10.1109/FIE.2013.6685158

Lena Feinman. 2018. Alternative to Proctoring in Introductory Statistics Community
College Courses. Ph.D. Dissertation. Walden University.

Dedre Gentner. 1983. Structure-Mapping: A Theoretical Framework for Analogy™.
Cognitive Science 7, 2 (1983), 155-170. https://doi.org/10.1207/s15516709cog0702_
3

B. Haberman and O. Muller. 2008. Teaching abstraction to novices: Pattern-
based and ADT-based problem-solving processes. In 2008 38th Annual Frontiers in
Education Conference. FIC-7-F1C-12. https://doi.org/10.1109/FIE.2008.4720415
M. K. Hartwig and J. Dunlosky. 2012. Study strategies of college students: Are
self-testing and scheduling related to achievement? Psychonomic Bulletin and
Review 19 (2012), 126-134.

Eder HernAjndez, Esmeralda Campos, Pablo Barniol, and Genaro Zavala. 2020.
The effect of similar surface features on studentsa€™ understanding of the inter-
action of charges with electric and magnetic fields. (2020). http://hdlhandle.net/
11285/636305

Keith J. Holyoak and Kyunghee Koh. 1987. Surface and structural similarity
in analogical transfer. Memory & Cognition 15, 4 (July 1987), 332-340. https:
//doi.org/10.3758/BF03197035

Michelle Ichinco and Caitlin Kelleher. 2017. Towards better code snippets: Ex-
ploring how code snippet recall differs with programming experience. In Visual
Languages and Human-Centric Computing (VL/HCC), 2017 IEEE Symposium on.
IEEE, 37-41.

Matthew Inglis and Lara Alcock. 2012. Expert and Novice Approaches to Reading
Mathematical Proofs. Journal for Research in Mathematics Education 43, 4 (2012),
358-390. https://doi.org/10.5951/jresematheduc.43.4.0358

Nicole Johnson-Glauch, Dong San Choi, and Geoffrey Herman. 2020. How engi-
neering students use domain knowledge when problem-solving using different
visual representations. Journal of Engineering Education 109, 3 (2020), 443-469.
https://doi.org/10.1002/jee.20348

Cazembe Kennedy and Eileen T. Kraemer. 2018. What Are They Thinking?
Eliciting Student Reasoning About Troublesome Concepts in Introductory
Computer Science. In Proceedings of the 18th Koli Calling International Con-
ference on Computing Education Research (Koli, Finland) (Koli Calling ’18). As-
sociation for Computing Machinery, New York, NY, USA, Article 7, 10 pages.
https://doi.org/10.1145/3279720.3279728

Mark M Lanier. 2006. Academic integrity and distance learning. Journal of
criminal justice education 17, 2 (2006), 244-261.

J.T. Laverty, S.M. Underwood, R.L. Matz, L.A. Posey, J.H. Carmel, M.D. Caballero,
C. L. Fata-Hartley, D. Ebert-May, S. E. Jardeleza, and M. M. Cooper. 2016. Charac-
terizing college science assessments: The three-dimensional learning assessment
protocol. PLoS ONE 11, 9 (2016), e0162333. https://doi.org/10.1371/journal.pone.

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34

[35

[36

[37

[38

[40

[41

[42

]

]

]

0162333

Chang J. Lee. 2018. Automated Randomization of Test Problems for Cheating
Prevention. World Journal of Research and Review 6, 2 (2018).

Andrew Luxton-Reilly and Andrew Petersen. 2017. The Compound Nature of
Novice Programming Assessments. In Proceedings of the Nineteenth Australasian
Computing Education Conference (Geelong, VIC, Australia) (ACE ’17). Association
for Computing Machinery, New York, NY, USA, 26-35. https://doi.org/10.1145/
3013499.3013500

Harvey Mellar, Roumiana Peytcheva-Forsyth, Serpil Kocdar, Abdulkadir Ka-
radeniz, and Blagovesna Yovkova. 2018. Addressing cheating in e-assessment
using student authentication and authorship checking systems: teachers’ per-
spectives. International Journal for Educational Integrity 14, 1 (Feb. 2018), 2.
https://doi.org/10.1007/s40979-018-0025-x

Timothy B. Michael and Melissa A. Williams. 2013. Student Equity: Discouraging
Cheating in Online Courses. Administrative Issues Journal: Education, Practice,
and Research 3, 2 (2013). https://eric.ed.gov/?id=E]J1057085

Orna Muller. 2005. Pattern Oriented Instruction and the Enhancement of Analog-
ical Reasoning. In Proceedings of the First International Workshop on Computing
Education Research (Seattle, WA, USA) (ICER °05). Association for Computing
Machinery, New York, NY, USA, 57-67. https://doi.org/10.1145/1089786.1089792
Nancy Pennington. 1987. Stimulus structures and mental representations in
expert comprehension of computer programs. Cognitive psychology 19, 3 (1987),
295-341.

Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review. ACM Trans.
Comput. Educ. 18, 1, Article 1 (Oct. 2017), 24 pages. https://doi.org/10.1145/
3077618

Joacim Ramberg and Bitte Modin. 2019. School effectiveness and student cheating:
Do students’ grades and moral standards matter for this relationship? Social
Psychology of Education 22,3 (July 2019), 517-538. https://doi.org/10.1007/s11218-
019-09486-6

Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
Teaching Programming: A Review and Discussion. Computer Science Ed-
ucation 13, 2 (2003), 137-172. https://doi.org/10.1076/csed.13.2.137.14200
arXiv:https://doi.org/10.1076/csed.13.2.137.14200

Kshitij Sharma, Patrick Jermann, Marc-Antoine Niissli, and Pierre Dillenbourg.
2012. Gaze Evidence for Different Activities in Program Understanding. In PPIG.
Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. ACM Trans. Comput. Educ. 13, 4, Article 19 (Nov.
2013), 40 pages. https://doi.org/10.1145/2534973

Jason M Stephens, Michael F Young, and Thomas Calabrese. 2007. Does moral
judgment go offline when students are online? A comparative analysis of un-
dergraduates’ beliefs and behaviors related to conventional and digital cheating.
Ethics & Behavior 17, 3 (2007), 233-254.

Ethel Tshukudu and Quintin Cutts. 2020. Understanding Conceptual Transfer
for Students Learning New Programming Languages. In Proceedings of the 2020
ACM Conference on International Computing Education Research (Virtual Event,
New Zealand) (ICER ’20). Association for Computing Machinery, New York, NY,
USA, 227-237. https://doi.org/10.1145/3372782.3406270

Gary M. Velan, Philip Jones, H. Patrick McNeil, and Rakesh K. Kumar. 2008.
Integrated online formative assessments in the biomedical sciences for medical
students: benefits for learning. BMC Medical Education 8, 1 (Nov. 2008), 52.
https://doi.org/10.1186/1472-6920-8-52

Chelley Vician, Debra D Charlesworth, and Paul Charlesworth. 2006. Students’
perspectives of the influence of web-enhanced coursework on incidences of
cheating. Journal of Chemical Education 83, 9 (2006), 1368. https://doi.org/10.
1021/ed083p1368

George R Watson and James Sottile. 2010. Cheating in the digital age: Do students
cheat more in online courses? Online Journal of Distance Learning Administration
13, 1 (2010).

Matthew West, Geoffrey L. Herman, and Craig Zilles. 2015. PrairieLearn: Mastery-
based online problem solving with adaptive scoring and recommendations driven
by machine learning. ASEE Annual Conference and Exposition, Conference Proceed-
ings 122nd ASEE Annual Conference and Exposition: Making Value for Society,
122nd ASEE Annual Conference and Exposition: Making Value for... (2015). 2015
122nd ASEE Annual Conference and Exposition ; Conference date: 14-06-2015
Through 17-06-2015.

Michele Weston, Kevin C. Haudek, Luanna Prevost, Mark Urban-Lurain, and
John Merrill. 2015. Examining the Impact of Question Surface Features on
Students’ Answers to Constructed-Response Questions on Photosynthesis. CBE
Life Sciences Education 14, 2 (June 2015). https://doi.org/10.1187/cbe.14-07-0110

https://doi.org/10.1007/978-94-017-2195-0_2
https://doi.org/10.1145/3386527.3405925
https://doi.org/10.1145/3231644.3231664
https://doi.org/10.1207/s15516709cog0502_2
https://doi.org/10.1080/02602938.2020.1719975
https://doi.org/10.1145/299649.299673
https://doi.org/10.1145/2810239
https://doi.org/10.1145/2810239
https://doi.org/10.1109/FIE.2013.6685158
https://doi.org/10.1109/FIE.2013.6685158
https://doi.org/10.1207/s15516709cog0702_3
https://doi.org/10.1207/s15516709cog0702_3
https://doi.org/10.1109/FIE.2008.4720415
http://hdl.handle.net/11285/636305
http://hdl.handle.net/11285/636305
https://doi.org/10.3758/BF03197035
https://doi.org/10.3758/BF03197035
https://doi.org/10.5951/jresematheduc.43.4.0358
https://doi.org/10.1002/jee.20348
https://doi.org/10.1145/3279720.3279728
https://doi.org/10.1371/journal.pone.0162333
https://doi.org/10.1371/journal.pone.0162333
https://doi.org/10.1145/3013499.3013500
https://doi.org/10.1145/3013499.3013500
https://doi.org/10.1007/s40979-018-0025-x
https://eric.ed.gov/?id=EJ1057085
https://doi.org/10.1145/1089786.1089792
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.1007/s11218-019-09486-6
https://doi.org/10.1007/s11218-019-09486-6
https://doi.org/10.1076/csed.13.2.137.14200
http://arxiv.org/abs/https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1145/2534973
https://doi.org/10.1145/3372782.3406270
https://doi.org/10.1186/1472-6920-8-52
https://doi.org/10.1021/ed083p1368
https://doi.org/10.1021/ed083p1368
https://doi.org/10.1187/cbe.14-07-0110

	Abstract
	1 Introduction
	2 Related Work
	2.1 Question surface features and knowledge fragility
	2.2 Transfer and problem solving
	2.3 Cheating and cheating mitigation

	3 Surface Feature Permutations
	4 Course context and data
	5 Results
	5.1 Homework base questions always have higher average scores
	5.2 Only some permutations have a significant impact on student performance
	5.3 Permutations have a more dramatic impact when we consider only one kind of base

	6 Discussion and Limitations
	6.1 Permutations are mostly neutral as far as question difficulty
	6.2 Homework questions are much easier than others - exposure or cheating?
	6.3 Prototype Removal may be easy to cheat
	6.4 Some permutations may stop cheating or indicate fragile learning
	6.5 Limitations

	7 Conclusion
	Acknowledgments
	References

