Hardware Atomicity for Reliable Software Speculation

Naveen Neelakantamit, Ravi Rajwart, Suresh Srinivas:, Uma Srinivasant, and Craig Zillest

_University of lllinois at Urbana-Champaignt and Intel Corporation; _
[neelakan, zilles]@uiuc.edu, [ravi.rajwar, suresh.srinivas, uma.srinivasan]@intel.com

ABSTRACT

Speculative compiler optimizations are effective in improving both
single-thread performance and reducing power consumption, but
their implementation introduces significant complexity, which can
limit their adoption, limit their optimization scope, and negatively
impact the reliability of the compilers that implement them. To
eliminate much of this complexity, as well as increase the effec-
tiveness of these optimizations, we propose that microprocessors
provide architecturally-visible hardware primitives for atomic exe-
cution. These primitives provide to the compiler the ability to opti-
mize the program’s hot path in isolation, allowing the use of non-
speculative formulations of optimization passes to perform specul-
ative optimizations. Atomic execution guarantees that if a specula-
tion invariant does not hold, the speculative updates are discarded,
the register state is restored, and control is transferred to a non-
speculative version of the code, thereby relieving the compiler from
the responsibility of generating compensation code.

We demonstrate the benefit of hardware atomicity in the con-
text of a Java virtual machine. We find incorporating the notion
of atomic regions into an existing compiler intermediate represen-
tation to be natural, requiring roughly 3,000 lines of code (~3%
of a JVM'’s optimizing compiler), most of which were for region
Sformation. Its incorporation creates new opportunities for existing
optimization passes, as well as greatly simplifying the implementa-
tion of additional optimizations (e.g., partial inlining, partial loop
unrolling, and speculative lock elision). These optimizations re-
duce dynamic instruction count by 11% on average and result in
a 10-15% average speedup, relative to a baseline compiler with a
similar degree of inlining.

Categories and Subject Descriptors: D.3.4 [Software]: Program-
ming Languages—Processors: Compilers, Optimization, C.0 [Com-
puter Systems Organization]: General-Hardware/software inter-
faces

General Terms: Performance

Keywords: Atomicity, Checkpoint, Isolation, Java, Optimization,
Speculation

1. INTRODUCTION

In his landmark paper “Compilers and Computer Architecture,”
William Waulf identifies three principles (regularity, orthogonality,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISCA’07, June 9-13, 2007, San Diego, California, USA.

Copyright 2007 ACM 978-1-59593-706-3/07/0006 ...$5.00.

and composability) that instruction sets should adhere to in order
to simplify compiler implementations, thereby improving the code
quality that is practically achievable [21]. Each time these princi-
ples are not observed, an additional set of special cases must be
considered during compilation in order to generate the best possi-
ble code for a given program. While architectures that ignore these
principles do not, in theory, preclude the building of compilers that
generate the highest performance code, in practice the quality of
code suffers as many compiler implementations will be unable to
justify the additional software complexity required.

Extending the principles set forth by Wulf, we see atomic exe-
cution—executing a region of code completely (and as if all op-
erations in the region occurred at one instant) or not at all—as a
fundamental principle for both improving the effectiveness of ex-
isting compiler optimizations and simplifying the implementation
of additional compiler optimizations. Specifically, we propose that
microprocessors expose atomicity as a hardware primitive to the
compiler. Doing so permits the compiler to generate a speculative
version of the code where uncommonly executed code paths are
completely removed, so that they need not be considered in (and
hence do not constrain) a region’s optimization. If one of these
pruned paths needs to be executed, the region will be aborted—
reverting back to the state at the beginning of the region—and con-
trol will be transferred to a non-speculative version of the code.

Speculative optimizations are important for achieving high per-
formance in many integer and enterprise applications, because the
control flow intensive nature of these programs prevents non-spec-
ulative compiler approaches from generating efficient code. In fact,
the presence of frequent control flow can be a significant inhibitor
of compiler optimizations, even when a significant fraction of the
control flow is strongly-biased and compilation is performed with
an accurate profile, as is true for the run-time optimizers invoked in
modern Java™virtual machines.

Consider, for example, the inter-procedural control flow graph of
the fully-optimized code generated by a leading commercial JVM
for the most frequently executed loop from Jython™(a DaCapo™
benchmark [2]) shown schematically in Figure 1(a). During ex-
ecution, few paths through this loop are ever executed, but the
hottest of those paths executes 109 conditional branches and over
600 instructions. Our manual analysis of the hot path found that
aggressive speculative optimizations can remove more than two-
thirds of the instructions (Figure 1(b)), which translates into both
improved performance and reduced power consumption. Tradi-
tional approaches to implementing these speculative optimizations,
however, come at a significant cost in complexity, because correct
execution along all of the potential paths has to be preserved by
the compiler. Figure 1(c) shows the simplest possible control flow
graph—having aggressively eliminated 67 branches with redundant

*Other names and brands may be claimed as the property of others.

4_-......

A

original flowgraph

<_-......

aregion abort x8

|
|
|
|
|
aregion_abort x3k
|
aregion_end |
|
I

aregion end

)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
H
H
I
I
I
I
I
I
I
I
I
I
I

9 L

Figure 1: Complexity of Compiler Optimizations. Abstract inter-procedural control flow graph from Jython (only executed paths shown).
(a) as optimized by a commercial JVM, (b) the hot path if optimized in isolation, (c) the control flow/call graph resulting from partial-inlining
and superblock formation to optimize the hot paths, (d) the control flow/call graph using the proposed hardware support for atomic regions.
Atomic regions enable the compiler to isolate the hot path from the cold paths for the purpose of optimization; if one of the compiler’s
speculations should fail, state is rolled back to the beginning of the atomic region and control is transferred to a non-speculative version of

the code.

conditions—that achieves the desired optimization of the hot path.
Because of the difficulty of verifying the correctness of these radi-
cal program transformations, many commercial systems do not per-
form speculative optimizations to this extent.

The fundamental source of complexity for the flow graph in Fig-
ure 1(c) is the compiler’s inability to isolate the hot path from the
cold path. The compiler must guarantee that any exit from the hot
path, however unlikely, will generate correct results. It must pro-
vide two key assurances to fulfill this guarantee. First, the compiler
must ensure that sufficient program state is kept live in the hot path
such that at each exit the “precise” program state required by the
cold path can be reconstructed. Second, it must maintain mappings
from the optimized hot path’s state to that of the cold path so that
compensation code can be generated, for every exit from the hot
path, to undo any hot-path specific optimizations.

Atomic execution, however, obviates the need for this complex-
ity, as shown in Figure 1(d). The compiler merely replicates the
hot code for execution in an atomic region; the entry to the atomic
region is delimited by an instruction (aregion_begin) that com-
municates the beginning of speculative execution to the hardware,
and exits from the atomic region are delimited by an instruction
(aregion_end) that instructs the hardware to commit the region’s
results atomically. The compiler converts branches to cold paths
into conditional abort instructions (aregion_abort); if an abort
condition evaluates such that control should transfer to a cold path,
the hardware rolls back to the state prior to the aregion_begin,
and transfers control to the original (non-speculative) version of the
code, as if speculative execution of the hot path had never occurred.

To summarize, atomic execution primitives simplify the imple-
mentation of speculative optimizations in three ways:

e Hardware maintains the state necessary for recovering from
speculative optimizations. The compiler no longer needs to
generate compensation code that recovers the correct program
state at each exit from the hot path.

e Hardware atomicity enables analysis and optimizations to
ignore the cold paths when optimizing the hot paths. By con-

verting cold paths into conditional aborts, the compiler enables
existing non-speculative analysis routines and optimizations to
perform, in effect, path-qualified analysis and speculative opti-
mizations. In comparison, previous approaches to speculative
optimization require complete re-implementation of these com-
piler passes.

e Hardware isolates execution from other threads. The com-
piler need not worry about the multithreaded safety of optimiza-
tions within the atomic region, because memory operations in
the region appear to occur atomically with respect to memory
operations from other threads.

In this paper, we report on our experience exploiting hardware
atomic regions to optimize single-thread performance in a Java vir-
tual machine. Our key findings can briefly be summarized as fol-
lows:

e Hardware atomicity greatly improves the return-on-investment
in implementing compiler optimizations. By using atomic re-
gions, we enable much higher code quality for a given amount
of compiler complexity. That is, hardware atomicity improves
the effectiveness of an optimization or simplifies its implemen-
tation or both.

e Atomic execution primitives provide a clean abstraction for com-
piler implementation (Section 4). We find that incorporating
atomic regions into an existing compiler internal representation
(IR) required minimal re-engineering of existing IR nodes and
compiler passes; we extend existing support for try/catch
primitives. In addition, atomic regions can be formed very early
in the compilation process, benefiting optimizations and trans-
formations on both the high-level IR (e.g., inlining and loop
unrolling), as well as the low-level IR. Other systems have pro-
vided hardware support for compiler optimizations (e.g., IA-64),
but the abstractions provided are overly complicated and restrict
their usefulness to back-end optimizations (e.g., scheduling).

e The atomic region abstraction simplifies the implementation of
new optimizations. For example, one author was able to produce
a working implementation of partial inlining in 6 hours. With-
out hardware atomic regions, this is a difficult transformation to
implement. When discussing the correctness of their partial in-
liner implementation (which did not use atomic regions), Muth
and Dubray remark [15]: “The flow of control in the program re-
sulting from partial inlining is sufficiently complex that it is no
longer obvious that the resulting program is semantically equiv-
alent to the original.”

e Atomic regions enable existing non-speculative formulations of
optimizations to perform transformations that typically require
speculative formulations (Section 6).

e A high-performance hardware implementation is a necessity, as

any overhead translates directly to lost performance (Section 6.3).

Defining atomic execution primitives with a clean interface per-
mits high-performance hardware implementations (Section 3).
The compiler further facilitates a high-performance implemen-
tation by being tolerant of “best effort” implementations that
abort for cases that are difficult for hardware designers (e.g., data
footprint overflowing the L1 cache).

In support of these findings, we evaluate the quality of code
generated from our prototype compiler enhanced with atomic re-
gions using detailed timing simulation. In our experiments, atomic
region-based optimizations enabled single-thread speedups (on an
aggressive superscalar processor) as high as 35%, with averages
across a collection of Java benchmarks from the DaCapo bench-
mark suite of 10% and 15%, depending on the degree of inlining
performed (Section 6). Furthermore, we find that our implementa-
tion results in an 11% average reduction in the number of micro-
operations executed by the processor. We describe our experimen-
tal method for generating execution samples from Java-based work-
loads using different compilers in Section 5.

As these experiments represent only an initial implementation
of compiler support for atomic regions, these results should not be
considered as definitive or as bounding the potential of atomic re-
gions. For example, we found that some of the optimization poten-
tial that our atomicity-enabled speculative optimizations expose in
the JVM is not being effectively exploited due to limitations in the
compiler’s back end (Section 6.4). Clearly, atomic regions are not
a panacea; a compiler will only generate code as good as its weak-
est pass. In addition, we find that if the abort rate is more than a
few percent, atomic regions begin to hurt performance rather than
help it. It will be necessary to build an adaptive framework that
re-compiles methods with high abort rates resulting from program
behavior changes. We discuss this as part of our future work (Sec-
tion 7). Finally, in Section 8 and 9, we discuss related work and
conclude, respectively.

2. MOTIVATION

Even high quality integer and enterprise code has significant in-
efficiencies resulting from two sources: good software engineer-
ing practice and the safety mechanisms provided by modern lan-
guages. Good software engineering practices and an emphasis on
programmer productivity demand that source code be readable, de-
bugable, maintainable, and reusable, which often translates to fre-
quent control flow and many invocations of small virtual methods.
Modern language safety features include performing NULL checks
on dereferenced pointers, array bounds checks to catch array over-
runs, and checked dynamic casts to ensure type safety. While these
checks rarely fail, their frequency significantly impacts the average
basic block size, as observed by the compiler.

if (i < chunk_size

99.8%, 0.2%

check_NULL (cached);
c_length = cached.length;
check_bounds(c_length, i);
cached][i] = x;

4+ i;

a) R Y
[_return |

1/ allocate new chunk
// update cached
/linsert element

Figure 2: An example Java method with hot and cold paths.
a) The hot path simply checks that the index is within the current
cached array segment, writes an array element, and increments
an index. b) The control-flow graph when two method calls are
inlined. c) Superblock formation removes incoming edges from
the hot path through code replication. d) Optimizations on the hot
path can require the insertion of compensation code blocks on exits
from the hot path.

In principle, compilers can be quite effective at mitigating these
inefficiencies. Much of the inefficiency results from having to re-
compute values and perform checks that are redundant or are sub-
sumed by other checks. Redundancy elimination techniques like
value numbering and partial redundancy elimination eliminate these
inefficiencies when they are within an optimization scope. How-
ever, because of the frequency of branches, only a fraction of the
redundancy is within a single basic block, necessitating global (i.e.,
inter-block) optimizations. As these optimizations must be correct
over all paths, variable definitions and uses on cold paths can pre-
vent redundancy elimination from occurring on hot paths.

Conventional speculative optimizations attempt to mitigate the
constraints that cold paths place on optimizing the hot paths. As a
brief example of the power of these optimizations, we describe a
representative optimization opportunity in Java, taken from the Da-
Capo benchmark Xalan™. Figure 2(a) shows a simplified control-
flow graph for the addElement method that inserts an integer
intoa SuballocatedIntVector object, which provides an ef-
ficient implementation of an extensible vector of integers. To avoid
having to reallocate and copy the whole vector whenever the vector
extends beyond its current allocation, the object maintains an array
of integer sub-arrays so that the vector can be extended simply by
allocating a new integer sub-array.

As is common in much of the code we analyzed, the function
addElement has a fast hot path and a slower cold path. The
fast path is invoked whenever an element is inserted into the same
sub-array as was previously accessed (the software caches the most
recent sub-array); since insertions are generally to sequential ele-
ments and the sub-arrays are large, this fast path ends up handling
99.8% of the calls. The slow path handles the rare cases when an
access is performed to a segment other than the cached one, includ-
ing when new segments are allocated. At the hottest call site, the
function is called twice sequentially on the same object, as shown
below:

m_data.addElement (m_textPendingStart);
m_data.addElement (length);

Inlining this method at both call sites (as shown in Figure 2(b))
can expose some redundancy to the compiler. Figure 3(a) shows the
code for the hot path al—b1—a2—b2. By performing superblock

replicated, unoptimized code optimized code

al: branch (i >= chunk size), cl al:branch (i >= chunk size), cl
bl: check null (chunk) bl: check null (chunk)
c_length = chunk.length c_length = chunk.length
check bounds (c_length, i) check bounds (c_length, i)
chunk[i] = x chunk[i] = x
++ i i
a2: pranch (i >= chunk_size), c2 a2:branch ((i+l) >= chunk size), C
b2: check_null (chunk) b2: —
c_length = chunk.length e e
check_bounds (c_length, i) check_bounds (c_length, i+1)
chunk[i] =y chunk[i+l] =y
++ i i+=2

compensation code
C: ++ i

Figure 3: Compiler-based redundancy removal. (a) unopti-
mized code after inlining, (b) through superblock formation, the
second copy of blocks a and b can be optimized knowing that the
first copies will already have been executed, enabling constant fold-
ing of the first increment of 1 and removal of the redundant NULL
check and load of the vector’s 1ength field, (c) the constant fold-
ing of the increment to i effectively involves downward code mo-
tion of ++ i past the branch in block a2, requiring compensation
code to be inserted in block C.

formation [10], which involves code replication, the compiler can
remove the incoming edge ¢1—a2 (shown in Figure 2(c)), so that
it can guarantee that execution of block b2 only occurs if block
b1 was executed (i.e. b1 dominates b2). This restructuring enables
the compiler to trivially remove those operations from b2 that are
redundant with those in bl (shown in Figure 3(b)). One of the
optimizations applied (constant propagation of the first ++1) effec-
tively removes an instruction from the path al—bl—a2—-c2; to
correct for this, however, the compiler must insert a compensation
block, C, into the control flow graph as shown in Figure 2(d). The
block C holds the removed code as shown in Figure 3(c).

While these optimizations can be relatively effective, their im-
plementation introduces a certain amount of compiler complexity.
In contrast, with a hardware atomicity primitive, the same hot path
code can be generated without needing any compensation code.
Furthermore, the example shown is a rather simple one; as the
scope of the optimization grows, the number of hot path exits will
grow (e.g., Figure 1(c)) as will the number of optimizations requir-
ing compensation at a given hot path exit. By obviating the need for
compensation code, a hardware atomicity primitive eliminates the
complexity resulting from corner-case interactions between com-
pensation from two different optimizations.

3. PROVIDING HARDWARE ATOMICITY

Hardware checkpointing has been previously proposed for im-
plementing resource-efficient high-performance processors. We sur-
vey this research and draw parallels between this microarchitectural
technique and the use of hardware atomicity to optimize software
execution. We then present a proposed interface for atomicity prim-
itives and discuss their implementation requirements.

3.1 Checkpoints and Hardware Atomicity

Modern processors employ speculative execution and typically
record information at a fine granularity for when speculation fails
and execution state needs to be restored. However, speculation
mostly succeeds, and the recorded information is not frequently
needed. Checkpoint processors use this observation to optimize
recovery information management [1, 4, 14]. They record recovery
state at coarse intervals (100s of instructions) instead of at every in-
struction. When a misspeculation does occur, the processor restores
the checkpoint and restarts execution, adaptively tracking informa-

tion at a finer granularity after a misspeculation. This checkpoint
abstraction obviates much of the fine-grain bookkeeping, since ex-
ecution can always restore to a safe point.

In this work, we extend the checkpoint abstraction to incorporate
hardware atomicity, ensuring that memory updates also appear to
occur atomically. Hardware provides atomicity for a sequence of
instructions by ensuring that either all the instructions appear to
be committed at the same time or that none are. Specifically, we
consider a semantic where the memory operations performed by
an atomic region appear to occur instantaneously, with all other
memory operations in the system appearing to occur either before
or after.

Checkpoint processors do not automatically provide hardware
atomicity. Previous proposals generally provide an execution that
satisfies the underlying memory model, the requirements of which
may be weaker than atomicity. Providing hardware atomicity for a
sequence of instructions involves the following steps [18]: 1) cre-
ating a register checkpoint at the recovery point, 2) tracking all
memory addresses accessed by the instructions, 3) buffering all up-
dates performed by the instructions, 4) using an ownership-based
cache coherence protocol to detect conflicting accesses from other
agents, 5) discarding updates on a conflict, and 6) committing the
updates in the cache atomically.

3.2 Exposing Hardware Atomicity to Software

Similar to how checkpoint processors use the checkpoint abstrac-
tion to optimize execution, we propose using the hardware atomic-
ity abstraction to optimize execution of software. Hardware atom-
icity provides an atomic region with the following invariant: either
the region commits successfully, or all changes performed in the
region are undone and control is transferred to an alternate region.
The compiler attempts to execute a speculative version of the code
as an atomic region, and, if the execution is unsuccessful, it falls
back to a less aggressively optimized version that includes all of the
paths. Hardware limitations such as limited buffering are treated as
implicit exits to cold paths, thus reducing requirements from the
hardware.

The hardware atomicity also alleviates the complexity of proving
the correctness of software optimizations in the presence of multi-
processing. Memory ordering is achieved by virtue of hardware
atomicity.

The runtime uses three instruction set extensions to expose the
atomicity invariant to the runtime.

e aregion_begin <alternate PC>. This instruction sig-
nals the start of a speculatively-optimized region and asks the
hardware to create a recovery point (similar to a branch instruc-
tion creating a rename table checkpoint) and specifies the alter-
nate code path for aborts.

aregion_end. This instruction ends the region and commits
updates atomically.

e aregion_abort. This instruction permits the runtime soft-
ware to explicitly rollback changes during the execution to a
prior point. This is used when an assertion fails and the exe-
cution must proceed down a cold path.

Figure 4 illustrates the use of these new instructions. Causes for
atomic region aborts are communicated to the software via two ad-
ditional registers. The first register encodes the reasons for an abort
(e.g., explicit abort, interrupt, data conflict, exception, etc.). The
second register records the program counter of the instruction re-
sponsible for an abort (if any). This information allows the JVM
to diagnose the cause of aborts and adaptively recompile, in order

speculation: success failure

aregion begin alt code ' ;

Figure 4: Example usage of the atomic primitives by the gen-
erated code If a speculation succeeds, no abort conditions will be
invoked and the execution will reach an aregion_end that com-
mits the atomic region. Speculation fails when an abort condition
evaluates to true, causing a branch to be taken to an unconditional
abort instruction. When the abort instruction commits, the regis-
ter state is restored, the lines written in the atomic region are in-
validated, and control is transferred to an address specified by the
aregion_begin instruction.

beg obj_ptr, 0, abort 11

aregion end
return

abort 11: aregion abort
alt_code:

return

to maintain a low misspeculation rate. Such a diagnosis requires
the compiler to generate a unique abort instruction for each asser-
tion and maintain a mapping from the program counter of the abort
instruction to the corresponding assertion in the compiler’s inter-
mediate representation.

3.3 Microarchitectural Implications

A critical aspect of the hardware atomicity abstraction is its syn-
ergy with high-performance processor implementations. This is
important since any proposal for exposing hardware mechanisms
to software must also be amenable to high-performance implemen-
tations. By using the checkpoint substrate, we can build high-
performance processors that can execute atomic regions at a high
rate.

A simple abstraction also provides significant flexibility to hard-
ware designers. The atomic abstraction allows hardware to exe-
cute the code region in whatever way seems fit, as long as when
an abort condition occurs, the execution restores to the beginning
of the region with appropriate information in the appropriate regis-
ters. Since the common and fast path execution is synergistic with
a checkpoint processor, overhead during fast path execution can be
reduced to that of a checkpoint processor with atomicity support.
This hides the latencies introduced due to any ordering-based seri-
alizations, the same way checkpoint processors do so. Other work
has shown that serializing operations and instructions that disrupt
the smooth flow of instruction execution through the pipeline de-
grade performance [3] by introducing delays in the pipeline.

Various implementation strategies based on checkpoint architec-
tures exist for hardware atomicity. In our implementation, we as-
sume the data cache retains the data footprint of the atomic region
and a register rename table checkpoint is used for recovering reg-
ister state. Each cache line is extended with two bits for track-
ing which addresses have been read and written in the atomic re-
gion. These addresses are exposed to the coherency mechanism to
observe invalidations. Flash clear operations are used to commit
and/or abort speculative state.

While support for hardware atomicity may appear similar to hard-
ware support for transactional memory [12], significant differences
in requirements and usage exist, resulting in different hardware
implementation requirements. Transactional memory is proposed
primarily for scalability and can potentially tolerate some loss of
single-thread performance to achieve this scalability. In contrast,

our use of hardware atomicity is focused on high single-thread per-
formance, and any execution overhead of the atomic region will re-
duce the benefit of these optimizations. We discuss the implications
of simplified implementations on our usage model in Section 6.3.
Use of a checkpoint execution substrate for implementing hardware
atomicity allows us to achieve a nearly no-overhead common case
execution and permit multiple atomic regions to be inflight simul-
taneously.

Apart from the performance goal of fast common case execu-
tion, our usage model simplifies the functionality required from the
hardware implementation. Since the hardware is being opportunis-
tically used to improve the performance of a single thread, a best
effort implementation is sufficient.

4. FORMING AND OPTIMIZING REGIONS

This section focuses on how the compiler uses the atomic region
abstraction to generate better code. Specifically, we demonstrate
how support for atomic regions can be introduced into a compiler
without significant changes, an algorithm for selecting appropri-
ate atomic regions while achieving good program coverage, why
assertions constrain optimization significantly less than branches,
and optimizations enabled by atomic regions.

Atomic regions and abort as try/catch: Modern languages like
Java generally provide support for structured exception handling,
which in Java takes the form of try and catch blocks. These
primitives enable the programmer to specify one block of code that
should be executed assuming that no exceptions occur and another
one to be executed to handle an exception. To support these lan-
guage features, a compiler must be able to represent them in its
intermediate representation (IR).

One of the most important observations that we made in this
work is that support for try and catch directly corresponds to
what is required to represent both atomic regions and the abort
path to non-speculative recovery code. This observation reduces
the problem of supporting software speculation within the compiler
to that of simply transforming the program’s control flow graph so
that atomic regions look like try blocks and non-speculative recov-
ery code looks like a catch block. As a result, no optimizations
needed to be modified to start exploiting the optimization oppor-
tunity exposed by the atomic regions. Our entire implementation
(including the implemented transformations and optimizations) re-
quired approximately 3,000 lines of code (LOC) (~3% of the opti-
mizing compiler), roughly two-thirds of which is the region selec-
tion algorithm. While the complexity of atomic region formation
corresponds closely that of reported by Hwu et al. for superblock
formation (2,000 LOC), their superblock optimizations incurred an
additional 12,000 LOC [10].

Region formation: In selecting regions for optimization, our im-
plementation maintains three properties: 1) overly large regions
must be avoided, 2) atomic regions must not be nested, and 3)
atomic regions will be single-entry, multiple-exit subgraphs, con-
taining arbitrary intraprocedural control flow. The first property
permits a best-effort implementation of atomicity (i.e., atomic re-
gions that overflow the cache or receive an interrupt will abort)
as well as bounds the lost effort when a region aborts. We avoid
nesting, in part, to demonstrate that its support is not a hardware
requirement. In addition, nesting only occurs as a result of encap-
sulating a non-inlined call within an atomic region and we have
yet to observe a case where this will significantly improve opti-
mization. The last property simplifies region formation by build-
ing upon other well understood single-entry techniques but with-
out the control flow limitations imposed by building regions from
traces [7, 10, 16].

The process of region formation is fundamentally a profile-driven
one. Our goal is to select regions for optimization that exclude in-
frequently executed (or “cold”) code paths. As is typically done
in JVMs, the first-pass compiler inserts instrumentation to profile
program behaviors (e.g., branches, virtual calls). For our experi-
ments, we define as cold any paths whose branch bias is less than
1%; these paths will be removed from atomic regions. We use the
term non-cold to refer to all paths that are not cold.

Our region formation process has five steps:

Step 1. Aggressively inline methods

Step 2. Select region boundaries (See Algorithm 1)

Step 3. Replicate flowgraphs for selected regions

Step 4. Convert cold edges into asserts

Step 5. Remove all inlined methods from non-speculative paths

The first step enlarges the optimization scope by aggressively
inlining methods. We do this without fear of the “code bloat” typi-
cally associated with inlining for two reasons. First we will only re-
tain an inlined method along a speculative path if it is contained en-
tirely within an atomic region (we proactively prune inlined meth-
ods that do not satisfy this criteria). Second, the remaining inlined
methods will have their infrequently executed paths speculatively
removed, enabling the retained paths to be further reduced in size
by optimization.

The next step, selection of region boundaries is the crux of re-
gion formation and is specified in detail in Algorithm 1; here we
overview its operation. The goal of boundary selection is to iden-
tify a set of blocks that will become the entry and exit points for
atomic regions. More specifically, it focuses on identifying blocks
that should become atomic region entries. The placement of atomic
region exits is largely born of necessity (i.e., atomic regions are
terminated at precisely the points that they could not be extended
beyond without violating one of our invariants).

Placement of atomic region boundaries starts by considering loops
to decide whether individual loop iterations should be executed in
atomic regions or whether the whole loop should be encapsulated
within a single atomic region. There are two factors which influ-
ence the decision: the dynamic path length through the loop and
whether the loop contains a non-inlined call on a non-cold path (i.e.,
will not be speculatively removed). We choose per-iteration atomic
regions when loop iterations are large or if the average number of
iterations executed is high enough that the region might overflow
the cache. As we terminate atomic regions at non-inlined calls and
often begin new ones immediately after the call returns, if such a
call is on a non-cold path within the loop, we must insert an atomic
region boundary in the loop’s header to prevent the creation of ir-
reducible flowgraphs.

Next, the region selection un-inlines any of the methods that
were aggressively inlined in Step 1 that will not be completely en-
capsulated in atomic regions; this step prevents “code explosion”
resulting from the method needing to be fully included on an atomic
region’s non-speculative path. If one of these methods includes an
atomic region boundary (from the previous step) or a non-inlined
call on a non-cold path, it is un-inlined.

The last part of the boundary selection algorithm places bound-
aries along acyclic paths. The algorithm iteratively selects the hottest
block that has not already been visited and traces the dominant path
through the block, terminating the trace at already selected region
boundaries or at the method entry, exit or call continuations. All
loop pre-headers and loop exits contained on the dominant path, as
well as the start and end of the path, are candidates for boundary
selection. The algorithm selects the subset of the candidate bound-
aries that minimizes II in Equation 1 where R is the desired region
size and 7, is the size of the n'" candidate region (this equation
was originally used in the task selection algorithm for MSSP [23]).

selected
region
boundaries

"""""" :

100% 0% 29%

aregion_end

99%

N _ 2
H:ZM 1)

Once atomic region boundaries have been selected, Step 3 cre-
ates the atomic regions by performing a depth first search (ignoring
cold paths) starting from each selected region boundary, stopping
at other selected region boundaries, the method exit, and any non-
inlined calls and then copying the visited blocks. An aregion_
begin is placed at the entry to the region, and an aregion_end
is placed at each region exit. All edges into the block that the re-
gion entry was copied from are moved to the aregion_begin
and an exception edge is added from the atomic_begin to the
source block. Figure 5(b) shows the result of this step (partial loop
unrolling has been applied to the outer loop).

The remaining steps of atomic region formation convert cold
branches into asserts (Step 4) and replace inlined methods on non-
speculative paths with calls (Step 5).

As we initially stated, we avoid generating large atomic regions
and we have found that setting LOOPPATHTHRESHOLD and R to
a value of 200 high-level intermediate representation operations'
satisfies this property without sacrificing much opportunity.

Why asserts constrain optimization less than branches do: As
the final step of our region formation, we convert branches from the
hot path to the cold paths into assertions in the compiler’s interme-
diate representation (IR). Previously, we claimed that these asser-
tions constrain optimizations less than branches; we now explain
why this is true. In our high-level IR, the assertion operations are
implemented as simple operations that have only source operands
and no side effects, like an ALU operation that produces no value.
They, unlike branches, can be completely ignored when optimizing
other instructions. Furthermore, they can be optimized by existing
passes: they can be freely scheduled (limited only by their data de-
pendences and the boundaries of the atomic region) and redundant
asserts are eliminated by existing redundancy elimination passes
such as global value numbering. Only dead code elimination needs
to be informed that these operations are essential and should not be
removed.

UThis has a loose correspondence to the number of hardware instructions
actually generated

Algorithm 1 Selection of atomic region boundaries

procedure SELECTBOUNDARIES(method)
selected Boundaries < ()

> Set of blocks

/I Place region boundaries at the headers of large loops (i.e. those with long iterations
// or high trip counts) and loops containing calls reachable along non-cold paths

L < LooPSINPOSTORDER(method)
foreach loop in L do
loopBlocks < GETBLOCKS(loop)
loopH eader « GETLOOPHEADERBLOCK(loop)

hasW armCall < HASCALLONWARMPATH(loopH eader, loop Blocks)

loopPreHeader < GETLOOPPREHEADERBLOCK(loop)

loopPathLength < LOOPWEIGHT(loop) / GETEXECCOUNT(loopPreH eader)

> Process loops from innermost to outermost

> Is a call reachable along non-cold paths?

> LOOPWEIGHT defined in Algorithm 2

if (loopPathLength > LOOPPATHTHRESHOLD) or hasW armCall then
selectedBoundaries < selected Boundaries U {loopH eader}

// Prune inlined methods that contain selected loops or calls reachable along non-cold paths.
// This limits unnecessary code bloat and is part of our partial inlining implementation

foreach inlined M ethod in INLINEDMETHODS(method) do
inlinedBlocks « GETBLOCKS(inlined M ethod)
inlinedEntry < GETENTRYBLOCK(inlined M ethod)

inlinedContinuation < GETCONTINUATIONBLOCK (inlined M ethod)

hasWarmCall < HASCALLONWARMPATH(inlined Entry, inlined Blocks)

> Is a call reachable along non-cold paths?

hasSelectedLoop < (selected Boundaries N inlinedBlocks) #

if hasWarmClall or hasSelected Loop then
UNINLINEMETHOD(inlined M ethod)

// Place region boundaries along acyclic paths
visited « ()

traceBoundaries < { GETENTRYBLOCK(method), GETEXITBLOCK(method), GETCALLBLOCKS(method) }

maxBlock ExecCount «— GETMAXBLOCKEXECCOUNT(method)

B «— BLOCKSSORTEDBYEXECCOUNT(method)
foreach block in B do

> Process most frequently executed blocks first

if block ¢ visited and GETEXECCOUNT(block) > (maxBlock ExecCount/100) then

dominantPath < TRACEDOMINANTPATH(block, selected Boundaries U trace Boundaries)
acyclicBoundaries < SELECTACYCLICBOUNDARIES(dominantPath)

> Defined in Algorithm 2
> Selects boundaries that minimize Equation 1

selected Boundaries < selected Boundaries U acyclicBoundaries

visited < visited U dominantPath

return selected Boundaries

Atomic regions enable optimizations: The guarantees provided
by atomic regions enabled us to implement several additional op-
timizations: partial inlining, partial loop unrolling and speculative
lock elision? [18]. The implementations of partial inlining and par-
tial loop unrolling were enabled by the design simplicity offered
by atomic execution, and speculative lock elision was enabled by
the atomicity and isolation guarantees provided by hardware. The
relatively small amount of code required to implement these opti-
mizations (~200 LOC each for partial inlining and partial loop un-
rolling, and ~400 LOC for speculative lock elision) demonstrates
the simplicity offered by atomic regions.

Partial inlining (loop unrolling) exposes additional opportunity
by enlarging the optimization scope, but limits static code expan-
sion by obviating the need to inline (unroll) infrequently executed
paths in the method (loop). However, implementing either opti-
mization without atomic regions overly burdens the compiler writer
with the responsibility of guaranteeing that the correct program
state can be recovered and forward progress made if an infrequent
path is executed. With atomic region support, the implementation
of both partial inlining and loop unrolling becomes almost trivial.
The hot paths of inlined methods and loops are simply wrapped in
atomic regions and the infrequent paths are converted into asser-
tions. If an infrequent path is executed, an assert will fire, hardware
will redirect execution to the corresponding non-speculative code
(that has not been inlined or unrolled).

>We use SLE to reduce monitor overhead, but our optimization would also
reduce monitor-induced serialization in multithreaded workloads

Speculative lock elision (SLE) exploits opportunity exposed by
our atomic region formation. Atomic regions often contain bal-
anced pairs of Java monitor enter and exit operations, and these
monitors are typically uncontended. The JVM we used already
provides fast-path implementations for common lock behaviors us-
ing reservation locks [11], but even the fastest path must still check
the status of the lock and update it with a store (both at monitor
entry and monitor exit) to track lock nesting depth. We can reduce
this monitor overhead with atomic regions; when a balanced pair of
monitor operations is contained within an atomic region, our imple-
mentation of SLE must only load the value of the lock upon mon-
itor entry and verify—a compare and branch—that it is not held
by another thread. In the common case, no action is needed at the
monitor exit. This improvement to single-thread performance is in
addition to any concurrency benefits from optimistically executing
a synchronized method/block.

S. EXPERIMENTAL METHOD

Evaluating the performance impact of run-time compiler enhance-
ments using new hardware features presents a number of challenges.
First, in the absence of real hardware, a full-system simulator is a
necessity, as a JVM and some of the workloads are multi-threaded
and use many system features. Second, because the compilation is
performed during the program run, the benchmark runs have to be
sufficiently long for the staged optimizer to produce the fully opti-
mized code. Finally, because we are comparing the performance of
two different compilers, we need to select equivalent regions of the
program’s execution to make an “apples-to-apples” comparison.

Algorithm 2 Used during selection of atomic region boundaries

// Generate an ordered list containing the most frequently executed
// path through the specified block. Stop tracing at selected
// boundaries and trace boundaries
procedure TRACEDOMINANTPATH(seed Block, trace Boundaries)
dominantPath «— [seedBlock]
traceBlock <« seedBlock; done « false
while —~done do
traceBlock < GETDOMINANTOUTEDGE(traceBlock)
dominantPath «— dominantPath + [traceBlock]
if traceBlock € traceBoundaries then
done « true
traceBlock <« seedBlock; done « false
while —~done do
traceBlock < GETDOMINANTINEDGE(traceBlock)
dominantPath «— [traceBlock] + dominantPath
if traceBlock € trace Boundaries then
done «— true
return dominantPath

procedure LOOPWEIGHT(loop)
weight «— 0
foreach block in GETBLOCKS(loop) do
block ExecCount <« GETEXECCOUNT(block)
numBlockOps < GETNUMOPERATIONS(block)
weight «— weight + (block ExecCount * numBlockOps)

return weight

Benchmark generated initial
: JVM/ code register &
compiler memory
marks image
JIT config 1

Timing Simulator

| Functional Simulator

Figure 6: A infrastructure for performance analysis of JVMs
on unimplemented hardware platforms.

Figure 6 shows our evaluation infrastructure, which performs the
evaluation in two steps. First, the benchmark is executed on our
modified version of the Apache Harmony*DRLVM Java Virtual
Machine (JVM) [9] on the SoftSDV*full-system simulator, which
we extended to support our ISA extensions for atomic regions as
discussed in Section 3°. We use the DRLVM’s server execution
manager configuration to maximize code quality; the whole pro-
cess is completely automatic and profile driven. This functional
simulation is run for a sufficiently long duration to allow any com-
pilation to be performed during the run and for the staged optimizer
to produce the fully optimized code.

Once we get to a representative portion of the execution, we
record the state of the functional simulation for use in timing sim-
ulation. The format of the state recorded, known as LIT, contains
a snapshot of the initial processor architectural state and memory
as well as a trace of all system interrupts necessary to simulate
system events such as DMA traffic etc. The LIT is consumed by
a detailed execution-driven simulator working on top of a micro-
operation (uop) level IA-32 architecture simulator. This simulator
performs a timing simulation, including accurate modeling of a de-
tailed memory subsystem, wrong path execution, interrupts, system
interactions, and DMA events. Our baseline 4-wide OOO pro-
cessor parameters are shown in Table 1. A checkpoint execution
substrate, similar to that of checkpoint processors, provides atomic
execution.

3For debugging the compiler, we also developed a means to test on real
machines by registering a signal handler for invalid opcode exceptions (trig-
gered by the unrecognized aregion_begin instructions) that inspects the
faulting instruction and branches immediately to the (non-speculative) re-
covery path.

Processor frequency 4.0 GHz
Rename/issue/retire width 4/4/4
Branch mispred. penalty 20 cycles
Instruction window size 128
Scheduling window size 64
Load/store buffer sizes 60/40

Pentium® 4 equivalent,
combine: 64K gshare/16K bimod
Hardware data prefetcher Stream-based (16 streams)
Trace Cache 64 K-uops, 8-way
I-TLB 128 entries
D-TLB 64 entries, 4-way
L1 Data Cache 32 KB, 4-way, 4 cycle hit, 64B line

Functional units
Branch predictor

L2 Unified Cache 4 MB, 8-way, 20 cycle hit, 64B line
L1/L2 Line size 64-bytes
Memory latency 100 ns

Table 1: Baseline processor parameters

[Benchmark | Description [#]
antlr Generates parser/lexical analyzer 4
bloat Bytecode analysis and optimization tool 4
fop Parses/formats XSL*-FO to generate PDF* | 2
hsqldb Executes JDBCbench*-like benchmark 1
jython Interprets pybench Python benchmark 1
pmd Analyzes a set of Java classes 4
xalan Converts XML* documents into HTML* 1

Table 2: DaCapo benchmarks used in evaluation. # = number
of samples used in evaluation.

Since we are comparing the performance of two different com-
pilation approaches, we must select equivalent regions of the pro-
gram’s execution. We modify the compiler to insert special markers
that can be interpreted by the full-system simulator. These markers
bound equal work at the program level, thus allowing a fair com-
parison. To select good marker locations, we collect a complete
trace of method invocations from the benchmark’s execution. We
break this trace into groups of 10,000 methods and use SimPoint
3.0’s phase classification tool [8] to identify phases. For up to four
phases per benchmark, we select a marker method that can be used
to bound a simulation sample and that is infrequently invoked (so
that it minimally perturbs the execution). Three dynamic invoca-
tions of the marker method are used to identify the sample: i) the
beginning of the warm-up period, ii) the end of warm-up/the be-
ginning of timing simulation, and iii) the end of timing simulation.
This method has some similarities to concurrent work [17].

When the JVM is invoked, we pass the marker method iden-
tifier—the class name, method name, and call signature—to the
JVM, which compares it to each method compiled and inserts the
marker in the appropriate method’s prologue. While the exact num-
ber varies, warm-up and simulation intervals are selected to contain
on the order of millions to tens of millions of instructions. For
the benchmarks with multiple important phases, we report data by
weighting the results for each sample by its phase’s contribution to
the overall execution.

We use the DaCapo benchmark suite [2] for evaluation (version
dacapo-2006-10). The suite is intended for evaluation of JVMs by
the programming languages, memory management, and computer
architecture communities and consists of a set of open source, real
world applications with non-trivial memory loads. Table 2 lists
the benchmarks used and their descriptions. The remaining bench-
marks were not included for experimental method reasons: chart
and eclipse were too long running, luindex’s samples could
not be validated in time, and 1eusearch is non-deterministic. To

Il atomic
[no-atomic + aggr. inline
[atomic + aggr. inline

8 8 &8 &8 8

=
o
I

% speedup over baseline (no-atomic) binary

o
I

antlr bloat fop hsgldb hon pmd

Figure 7: Execution time speedups. All runs use the same hard-
ware configuration, performance differences result from increased
optimization effectiveness.

Il atomic
[no-atomic + aggr. inling
[atomic + aggr. inline

n

w
o

[N]
o

=
S)
|

% reduction over baseline (no-atomic) binary
o
L

antlr bloat fop hsgldb jython pmd xalan average
Figure 8: Micro-operation (uop) reduction.

avoid non-determinism in xalan we used the single-threaded ver-
sion from the beta-2006-08 release of the benchmarks. To work
around a bug in Harmony, we also used jython from the same
beta release.

6. RESULTS

In our analysis, we are concerned with two metrics: performance
and dynamic micro-operation (uop) count reduction. Our perfor-
mance measurements compare execution time of the sampled re-
gions. We measure the reduction in dynamic uop counts, because
they, in general, will directly translate into energy efficiency. Fewer
uops flowing down the pipeline will result in less switching activ-
ity, which in turn results in a reduction in the amount of energy
consumed to perform a given unit of program work.

Initially, we compare two compiler configurations: no—atomic,
a baseline set of optimizations that corresponds closely to Har-
mony’s default server configuration, and atomic, which is our
optimizer enhanced to exploit hardware-supported atomic execu-
tion. The optimization passes enabled are the same for both, except
atomic performs atomic region formation, partial inlining, partial
loop unrolling, and speculative lock elision.

As shown in Figure 7, we find that these optimizations enable
a significant (10% average) speedup across our benchmarks. Fur-
thermore, these speedups are accompanied by a nearly compara-
ble reduction in the number of uops retired, as shown in Figure 8.
By providing a simple recovery abstraction (atomic regions) the
hardware has facilitated the compiler’s generation of higher perfor-
mance and more efficient code.

When we inspected the code, we clearly saw evidence of spec-
ulative optimizations, even though the compiler had no such op-
timizations implemented in their traditional formulations. In one
atomic region, for example, elimination of cold paths enabled the
compiler to simplify an indirect branch to a conditional branch (as
only 2 of the 9 cases were not-cold), eliminate branches via con-
stant propagation previously inhibited by cold control flow, elim-

Bench. Atomic Regions Region Abort Rate
coverage | unique | size % per 1k uop
antlr 9% 96 47 | 0.02 0.0004
bloat 69% 93 128 | 43 0.12
fop 20% 73 32 | 0.01 0.0007
hsqldb 76% 75 88 | 2.74 0.24
jython 87% 14 227 | 0.69 0.27
pmd 32% 32 42 2.2 0.18
xalan 78% 37 78 | 0.28 0.03

Table 3: Atomic region statistics. coverage: fraction of executed
uops in atomic regions, unique: average number of unique atomic
regions in execution sample(s), size: average size of atomic re-
gions (in dynamic instructions), abort %: percentage of regions
aborting, aborts/1k uop: number of aborts per 1,000 uops. Data
shown for the atomic+aggressive inlining configuration.

inate redundant loads, and eliminate redundant checks. Some of
the benefits in other regions, however, were merely the result of
increasing the scope of optimization through (partial) inlining and
(partial) loop unrolling beyond what the baseline inliner and loop
unroller were exposing. In order to demonstrate that this scope
enlargement is not responsible for all of our benefit, we ran two
additional sets of experiments: the baseline and at omic configu-
rations with an unrealistically large inlining threshold (a factor of
five larger than the baseline), which should achieve the optimiza-
tion potential resulting just from scope enlargement. The results
for these configurations are also shown in Figures 7 and 8.

From this data it can be clearly seen that the atomic region-based
optimizations are achieving more than just scope enlargement, as
the performance from no-atomic+aggressive inlining
is less than half of the atomic+aggressive inlining case.
Actually, increasing the optimization scope appears to dispropor-
tionately benefit the atomic+aggressive inlining case, as
its speedup (25.3%) is more than the sum of those of atomic
and no—atomic+aggressive inlining (10.2% and 7.5%,
respectively).

6.1 Understanding the Variation

Clearly, our optimizations do not uniformly benefit all of the
benchmarks; the speedups achieved by the atomic+aggressive
inlining configuration range from 56% (hsgldb) to 2% (pmd).
In this section, we explore the sources of this variation.

Across the benchmarks, we see a strong correlation between the
uop reduction and speedup, which is not surprising as both gener-
ally occur when code is optimized more effectively. It should be
noted that our optimizations are not just removing a subset of the
instructions (as is done in SlipStream [20]); in many cases we are
also replacing uops with other, simpler uops (e.g., SLE replaces
compare-and-swap primitives and monitor data structure updates
with a load and a branch) as well as simplifying the code’s critical
path. This explains why many of the benchmarks exhibit superlin-
ear speedups relative to their uop reduction.

The biggest factor affecting the degree of optimization seems
to be coverage. Table 3 shows that four of the benchmarks with
the high speedups—bloat, hsgldb, jython, and xalan—
execute most (upwards of 69%) of their uops in atomic regions.
As we are reporting coverage after optimization and most of the re-
duction in dynamic uop count occurs in the atomic regions, an even
larger fraction of the program is actually encapsulated in atomic re-
gions than these coverage numbers suggest; this effect also explains
how ant 1r can achieve a 17% uop reduction with only 9% cover-
age. These four benchmarks also have the largest atomic regions.
With average region sizes ranging from 75 to 225 instructions after
optimization there is sufficient scope for significant optimization.

The outlier from this trend is ant 1r, which manages to achieve
significant speedups despite low coverage because a large fraction
of the instructions are eliminated from the atomic regions it does
form. On average, two-thirds of the instructions in ant 1r’s atomic
regions get optimized away. ant 1r, like the other benchmarks that
get significant speedups, is getting most of its benefits from two
main sources: generic redundancy elimination and elimination of
monitor overhead of calls to synchronized classlib methods.

The pmd benchmark actually slows down in the atomic con-
figuration, because it has relatively low coverage, but incurs a 2.2%
abort rate for its atomic regions. This relatively high abort rate is
the result of a behavioral change in four atomic regions that oc-
curs between when the behavior is profiled and where our execu-
tion sample is taken. Such a change incurs aborts when a path
that initially appears cold is removed from the atomic regions and
then later starts to be frequently executed. Such behavior changes
have previously been documented [19] and their negative impacts
on performance can be eliminated through adaptive recompilation
when an atomic region begins to frequently abort [22].

Two other benchmarks—hsqgldb and bloat—also have non-
trivial abort rates, but achieve significant speedups despite them.
In hsgldb, the aborts occur very early in the atomic region so
they have little negative impact beyond a pipeline flush. In bloat,
they do have a large impact; almost all of bloat’s aborts occur
in one of its four execution samples—the one from the least dom-
inant phase—and that sample incurs a 33% slowdown. Without
that phase, bloat’s speedup would be 40% (up from 32%) for the
atomic+aggressive inlining configuration.

Despite performing well in the atomictaggressive in-
lining configuration, the jython benchmark incurs a slowdown
in the at omic configuration. The source of this discrepancy, is an
important method (get item, called four times in a hot loop) that
is not being inlined by the partial inliner in the at omic configura-
tion. This results in a large number of small atomic regions being
formed that incur more overhead than they provide optimization
opportunity. The getitem method is not being inlined because
it contains what appears to be a polymorphic call site and our al-
gorithm will not partially inline methods containing polymorphic
calls. If getitem were inlined, however, this call site is per-
fectly monomorphic. If we force our implementation to recognize
this fact, get itemis inlined and the at omic configuration’s 9%
slowdown becomes a 10% speedup, as shown by the grey bars in
Figure 7. These performance benefits may also be achieved through
implementing an adaptive recompilation strategy, as we can per-
form aggressive speculation (e.g., that polymorphic call sites are
monomorphic) and recompile those methods containing atomic re-
gions that frequently abort.

6.2 Architectural Analysis of Atomic Regions

In this section, we quantify the atomic regions generated by the
compiler from the hardware’s perspective. In terms of implement-
ing atomicity in hardware, it is important to know the size of atomic
regions in terms of dynamic instruction count and data footprint.

If the compiler-generated atomic regions were consistently small,
they could be buffered completely within the pipeline, but we find
this not to be the case. A 128-entry reorder buffer is insufficient to
hold nearly 25% of the atomic regions executed (data not shown).
A small fraction of atomic regions even contain over 1,000 uops.
By using register checkpoints for recovery (similar to branch check-
points but those that live past speculative retirement), we enable the
compiler to construct such regions.

Our implementation uses the data cache to buffer the reads and
writes in the atomic regions, similar to prior work [5, 14]. We find
that the modern L1 caches are easily sufficient for holding the read

60T chkpt
[chkpt + 20-cycle overhead
_| 8 chkpt, single-inflight

% speedup (exec. time) over baseline binary

antlr bloat fop hsgldb jython pmd xaan average

Figure 9: Sensitivity to hardware atomic primitive implemen-
tation. All runs use the same code (atomic+aggressive
inlining) on different hardware configurations: chkpt:
the base high-performance non-stalling checkpoint execution
substrate, + 20-cycle: stalls the pipeline for 20 cycles
at every aregion_begin, and single-inflight: stalls an
aregion_begin atdecode if another uncommitted atomic region
is already in the pipeline.

and write set of the atomic region. Most atomic regions access less
than 10 cache blocks and 50 cache blocks is sufficient for 99% of
the atomic blocks we observed (for reference a 32KB cache with
64B blocks holds 512 blocks). Only 110 atomic regions out of the
1.7 million that we simulated touched more than 100 cache blocks
and only one overflowed the cache. Clearly, our region selection
algorithm is effective at tolerating the constraints of a bounded
atomic primitive. While the read and write sets of the atomic re-
gions fit easily within the cache, the number of loads and stores,
which tend to be proportional to the number uops in the atomic re-
gion, are generally too large for fully buffering in the load and store
buffers.

6.3 Microarchitectural sensitivity

Because this application of atomic regions is intended to im-
prove single-thread performance, they must be implemented with
minimal overhead in order to preserve the benefits achieved by the
compiler optimizations. So far, we have assumed a checkpoint ex-
ecution substrate (similar to checkpoint processors) to implement
hardware atomicity in a high performance manner.

Now we investigate impact on performance of alternate or sim-
plified implementations in the absence of a high-performance check-
point substrate to provide atomicity. In particular, we are concerned
about two potential sources of overhead: overhead in the form
of additional operations and serialization that may occur as part
of the aregion_begin to record recovery state, and serializing
overheads that may occur due to simplified implementations of the
aregion_begin and aregion_end instructions in the absence
of a checkpoint substrate. We explored the performance sensitiv-
ity to these effects by modeling two ways such overheads may be
exposed. First, we measured the performance of the atomic+
aggressive inlining compiler configuration with a simula-
tor configured to stall the pipeline for 20 cycles when processing an
aregion_begin. Second, we considered implementations that
only permit a single atomic region to be in flight at a time; an
aregion_begin is stalled at decode until all preceding atomic
regions commit. As shown in Figure 9, both of these configu-
rations effectively eliminate the benefit of atomic regions in our
benchmarks. The sole exception is ant1r, which shows limited
sensitivity because its execution uses atomic regions rather spar-
ingly.

In addition to our baseline processor configuration, we measured
performance on two more-modest microarchitectures, as might be
incorporated into future “many-core” processors: a 2-wide OOO

version of the baseline machine (widths reduced to 2/2/2) and a
2-wide half OOO configuration that halves the superscalar width
and all other processor structures (including caches and TLBs). We
found that the relative speedups achieved by our atomic region-
based optimizations closely tracked the 4-wide OOQO results shown
in Figure 7 (generally within a percent or two), so the data is not
shown due to space limitations.

6.4 Limitations of the existing compiler

In the process of implementing our atomic region-based opti-
mizations, we found that sometimes the benefits of our optimiza-
tions were mitigated by limitations in the compiler’s other opti-
mizations and code generation. One particularly spectacular exam-
ple of this effect occurred when we tried to remove the garbage
collection safe point from loops completely encapsulated in atomic
regions, replacing it with a single load of thread’s local yield flag
in the loop’s pre-header. As it turns out, the JVM’s register alloca-
tor implicitly relied on the call to the yield () function to prevent
the registers within the loop from being assigned to variables only
used outside the loop. If this call was removed, performance plum-
meted because many of the frequently accessed variables within
loops were now being spilled to the stack.

As such, our performance results should not be considered a
definitive characterization of the potential of atomic regions. We
believe that significant further optimization potential exists. Nev-
ertheless, it is important to recognize that atomic regions primarily
facilitate the optimization phase of the compiler, and must be com-
plimented by high quality code generation and run-time services to
achieve high performance.

7. FUTURE WORK

While we find these initial results to be promising, they also
demonstrate there is further research to be done: i) fine-tuning the
region selection algorithm to achieve higher coverage and to form
larger atomic regions with more optimization potential, ii) design-
ing and implementing an adaptive framework to maximize specula-
tion while minimizing abort rate, and iii) formulating existing op-
timizations for atomic regions and identifying new optimizations
that atomic regions enable. We briefly elaborate on the last two
items.

Maximizing the performance of atomic regions will require con-
tinuously monitoring their abort rate, and adaptively recompiling
methods when their profiles change. While managed language en-
vironments like the JVM profile extensively and adaptively recom-
pile methods based on their execution frequency, they generally do
not re-compile fully-optimized methods if the profile changes be-
cause of the execution overhead of profiling the fully optimized
code. This however will be a necessity when using atomic regions,
as an abort rate of even a few percent can have a significant im-
pact on performance. The process of tracking changing profiles,
however, is a rather simple one in the context of atomic regions,
as, for the most part, profiling is needed only when a region aborts
and the hardware reports which assertion is failing. The remaining
challenge, beyond engineering the system, is in computing an abort
rate from a measured abort count. Doing so will require efficiently
estimating the number of times each atomic region is executed, and,
based on the data in Figure 9, straight-forward instrumentation of
every atomic region may incur too much overhead.

We believe compiler writers will find new optimizations enabled
by atomic regions, beyond SLE. One specific example is consid-
ering a post-dominance relationship within an atomic region as
equivalent to a dominance relationship with regards to array bounds
check elimination. In general, check elimination optimization can

remove a check B if another check A exists that subsumes it (i.e.,
it is equivalent or stronger) and A dominates B (i.e., all paths to
B go through A). With atomic regions, it becomes safe to re-
move a check A that is post-dominated by a subsuming check B
(i.e., all paths from A go through B), because if B fails, con-
trol will be transferred to a non-speculative version of the code
that will test both A and B and report the failing check prop-
erly to the run time. This optimization would enable the removal
of check_bounds (c_length, i) from Figure 3 because in
the atomic region it will be post-dominated by the stronger check
check_bounds (c_length, i+1).

8. RELATED WORK

Whereas prior work on hardware checkpoint/rollback support for
optimization has only been in the context of dynamic binary opti-
mizers, our work demonstrates its integration into traditional com-
pilation.

The rePLay framework [7,16], converted predictable control flow
into assertions that were implemented as instructions that abort and
rollback the current region. By doing so, the optimizer did not
have to generate compensation code for the cold-path exits from
an optimized region. However, rePLay used these assertions in a
hardware-only optimizer. A modified branch predictor identified
predictable instruction traces, called frames. A hardware code op-
timizer (similar to a compiler) processed these traces and applied
optimizations. These traces were cached in a frame cache, and a
frame predictor controlled dispatch.

Our proposal provides three key advantages over rePLay. First,
rePLay required significantly more hardware. It used dedicated
hardware for profiling, trace construction, filtering, optimization
and caching. In contrast, we perform these in software. Second,
because rePLay used hardware for optimizations, to manage hard-
ware complexity it truncated frames at unpredictable branches, thus
restricting the optimization scope. In contrast, we can form regions
with arbitrary internal control flow. Third, since rePLay used hard-
ware for frame caching, the optimizations were not persistent and
programs with large instruction footprints would thrash the frame
cache. These re-constructions and re-optimizations expend energy.
In contrast, our proposal stores the optimized regions in program
memory, where they persist throughout the program’s execution.

The Transmeta Crusoe™processor also provides checkpoint and
rollback capability for compiler optimizations [6] in the form of
a shadow register file and a gated store buffer. Unlike our pro-
posal, the Transmeta Code Morphing Software*(CMS) does not
use the checkpoint/rollback support for explicit control speculation
(i.e., no explicit abort); it uses aggressive predication to form hy-
perblocks. Instead, the checkpoint/rollback capability is used to
implement precise architectural exceptions and for recovery when
loads are incorrectly scheduled ahead of stores.

Our proposal has three additional advantages over the rePLay
and Transmeta/CMS works. First, because they were implemented
in the context of a dynamic binary translator/optimizer, they are
constrained to perform optimizations at the ISA level. In contrast,
our approach permits higher-level optimizations including specul-
ative lock elision and partial inlining. Second, because our pro-
posed hardware support records the read set of the optimized re-
gion, tracks it for coherence conflicts, and commits the region’s
stores atomically, it is multi-processor safe. Finally, the size of our
regions is less constrained than in rePLay (no conditional branches
and up to the size of the re-order buffer) and Crusoe (limited by
the size of the gated store buffer and memory disambiguation hard-
ware); the only size constraint on our regions is that the read and
write set of the optimization region must reside entirely in the cache.

Checking speculative compiler optimizations using multiple hard-
ware threads has also been proposed. Three of these proposals are
SlipStream [20], Master-Slave Speculative Parallelization
(MSSP) [23], and FastForward [13]. They decompose an execution
into two threads. The leading thread speculatively runs ahead and,
with high probability, computes intermediate results of the pro-
gram. The trailing thread (or threads in the case of MSSP) verifies
and commits the leading thread’s state. Speculative optimizations
can be performed on the leading thread without requiring compen-
sation code; the checks are performed by the trailing threads. In
contrast, we do not require multiple cores per thread.

9. SUMMARY

This paper demonstrates that, through the introduction of archi-
tectural support for atomic regions, we can greatly facilitate the
implementation of speculative optimizations in a compiler. This
simplification occurs because atomic region abstraction permits the
compiler to isolate the hot paths for the purpose of optimization.
Infrequently-executed paths are replaced with simple checks (con-
ditional aborts) that can be largely ignored during the optimization
process. As a result, speculative optimizations can be performed
without compensation code, enabling a great reduction in compiler
complexity to achieve a given code quality.

Such hardware support is particularly compelling because the
implementation complexity is modest. The atomicity abstraction
is a clean one, placing few constraints on computer architects with
regards to its implementation, especially as the compiler can effec-
tively tolerate “best effort” implementations that do not guarantee
forward progress in all circumstances. That said, the performance
of the primitive is of fundamental importance, as any overhead or
unnecessary serialization will negate much of the single-thread per-
formance benefits enabled by this technique.

In light of the current industry-wide drive to improve efficiency,
techniques that can improve performance while reducing power are
particularly attractive. In our prototype compiler implementation,
usage of atomic regions enabled average speedups of 12% across
a suite of DaCapo benchmarks, with commensurate reductions in
the number of micro-operation flowing through the pipeline. While
these represent non-trivial gains in their own right, we believe that
this does not represent the full potential of this approach.

10. ACKNOWLEDGMENTS

This research was supported in part by NSF CCR-0311340, NSF
CAREER award CCR-03047260, and a gift from the Intel corpora-
tion. We would like to thank Haitham Akkary, Jesse Barnes, Ma-
hesh Bhat, Alexander Ivanov, Konrad Lai, Egor Pasko (and the rest
of the Apache Harmony developers), Pierre Salverda, Srikanth T.
Srinivasan, and Yury Yudin for their technical support and feedback
relating to this project.

11. REFERENCES

[1] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint Processing
and Recovery: Towards Scalable Large Instruction Window
Processors. In Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, Dec. 2003.

[2] S. M. Blackburn et al. The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In Proceedings of the 21st annual ACM
SIGPLAN conference on Object-Oriented Programing, Systems,
Languages, and Applications, Oct. 2006.

3

—

[4

=

[5

—_

(6]

[7

—

[8

[l

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

Y. Chou, L. Spracklen, and S. G. Abraham. Store Memory-Level
Parallelism Optimizations for Commercial Applications. In
Proceedings of the 38th Annual IEEE/ACM International Symposium
on Microarchitecture, Nov. 2005.

A. Cristal et al. Out-of-Order Commit Processors. In Proceedings of
the Ninth IEEE Symposium on High-Performance Computer
Architecture, Feb. 2003.

P. Damron et al. Hybrid Transactional Memory. In Proceedings of
the Twelfth International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. 2006.

J. C. Dehnert et al. The Transmeta Code Morphing Software: Using
Speculation, Recovery, and Adaptive Retranslation to Address
Real-life Challenges. In Proceedings of the International Symposium
on Code Generation and Optimization, 2003.

B. Fahs et al. Performance Characterization of a Hardware
Framework for Dynamic Optimization. In Proceedings of the 34th
Annual IEEE/ACM International Symposium on Microarchitecture,
Dec. 2001.

G. Hamerly et al. SimPoint 3.0: Faster and More Flexible Program
Analysis. Journal of Instruction Level Parallelism, 7, Sept 2005.
Harmony Dynamic Runtime Layer Virtual Machine (DRLVM).
http://harmony.apache.org/subcomponents/drlvm.

W. M. Hwu et al. The Superblock: An Effective Technique for VLIW
and Superscalar Compilation. Journal of Supercomputing,
7(1):229-248, Mar 1993.

K. Kawachiya, A. Koseki, and T. Onodera. Lock Reservation: Java
locks can mostly do without atomic operations. In Proceedings of the
17th annual ACM SIGPLAN conference on Object-Oriented
Programing, Systems, Languages, and Applications, 2002.

J. R. Larus and R. Rajwar. Transactional Memory. Morgan and
Claypool, Dec. 2006.

L. ling Chen and Y. Wu. Fast Forward: Aggressive Compiler
Optimization with Speculative Multi-Threaded Support. In Workshop
on Multithreaded Execution, Architecture and Compilation, 2000.

J. F. Martinez et al. Cherry: Checkpointed Early Resource Recycling
in Out-of-order Microprocessors. In Proceedings of the 35th Annual
IEEE/ACM International Symposium on Microarchitecture, Nov.
2002.

R. Muth and S. Debray. Partial Inlining. Technical report, Univ. of
Arizona, Dept. of Computer Science, 1997.

S.J. Patel and S. S. Lumetta. rePLay: A Hardware Framework for
Dynamic Optimization. IEEE Transactions on Computers,
50(6):590-608, 2001.

E. Perelman et al. Cross Binary Simulation Points. In Proceedings of
IEEE International Symposium on Performance Analysis of Systems
and Software, Apr. 2007.

R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution. In Proceedings of the
34th Annual IEEE/ACM International Symposium on
Microarchitecture, Dec. 2001.

M. Smith. Overcoming the Challenges of Feedback-Directged
Optiization. In Proc. Proc. ACM SIGPLAN Workshop on Dynamic
and Adaptive Compilation and Optimization, Jan. 2000.

K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream
Processors: Improving both Performance and Fault Tolerance. In
Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, Nov.
2000.

W. A. Wulf. Compilers and Computer Architecture. IEEE Computer,
14(7):41-47, 1981.

C. Zilles and N. Neelakantam. Reactive Techniques for Controlling
Software Speculation. In Proceedings of the International
Symposium on Code Generation and Optimization, 2005.

C. Zilles and G. Sohi. Master/Slave Speculative Parallelization. In
Proceedings of the 35th Annual IEEE/ACM International Symposium
on Microarchitecture, Nov. 2002.

