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ABSTRACT
In this paper, we perform a comparative analysis using a within-
subjects ‘think-aloud’ protocol of introductory programming stu-
dents solving tracing problems in both paper-based and computer-
based formats. We demonstrate that, on computer-based exams
with compiler/interpreter access, students can achieve significantly
higher scores on tracing problems than they do on similar paper-
based questions, through brute-force execution of the provided
code. Furthermore, we characterize the students’ usage of machine
execution as they solve computer-based tracing problems.

We, then, suggest “reverse-tracing” questions, where a block
of code is provided and students must identify an input that will
produce a specified output, as a potential alternative means of
assessing the same skill as tracing questions on such computer-
based exams. Our initial investigation suggests correctly-designed
reverse-tracing problems on computer-based exams more closely
track a student’s performance on similar questions in a paper-based
format. In addition, we find that the thought process while solving
tracing and reverse-tracing problems is similar, but not identical.
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1 INTRODUCTION
Computer-based exams have a long history in computer science.
Often referred to as “lab exams”, they were first proposed as a more
authentic means of evaluating student code writing skills, because
they permitted students to compile, test, and debug their code [2,
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10, 25]. More recently, the rapid increase of students into com-
puter science courses has led some universities to adopt computer-
based exams to facilitate the auto-grading of code writing ques-
tions [37, 44], as well as address the logistics of running exams in
large classes [16, 53, 55]. Online classes frequently rely on computer-
based exams, including the recent shift to online teaching due to
Covid-19. CS students often prefer computerized-assessments over
paper-assessments mainly for the potential flexibility to choose an
exam time [54], the ease of typing faster to edit code (compared to
pen and paper) [41], as well as the auto-correction of syntax, unit
tests, and debuggers from Integrated Development Environments
(IDEs) [1, 53].

In most disciplines, the effect of shifting exams from paper to
computer is minimal [8, 39], but previous work has noted significant
format effects in computing courses when students can compile
and execute code in the computer-format. Corley et al. and Lap-
palainen et al. found that CS1 student performance on code writing
tasks did not significantly differ between the two formats in terms
of understanding, but did differ significantly in syntax error fre-
quency [11, 30]. In contrast, Grissom et al. found that CS2 students
in the paper-format group of their study performed significantly
worse in terms of understanding [20]. This prior research, however,
has focused entirely on code writing questions.

In this paper, we focus on code tracing problems. As shown in
Figure 1a, code tracing problems ask students to execute a provided
fragment of code in their head, with the pedagogical goal of assess-
ing a student’s understanding of a programming language’s seman-
tics. While widely used on paper exams, code tracing problems are
potentially problematic on computer-based exams, if students can
execute the provided code to determine its output without need-
ing to comprehend the code. In fact, in our study we found that
there was effectively no correlation between student’s ability to
complete code tracing questions in the computer-based format and
their ability complete them in the paper-based format. As shown
on Figure 2, students always had a 100% performance on tracing
problems in the computer-based format, compared to scoring from
33% to 100% on paper, a result discussed in Section 4.1.

One solution to the brute-forcing of code tracing problems is
to prevent students from accessing software that permits code
execution. Tools and products like the Safe Exam Browser, ProctorU,
and Proctorio provide means for controlling the software to which
a student has access during a computer-based exam. There are,
however, a number of practical issues with using such software.
First, faculty may desire to include both questions where such
software shouldn’t be accessed (e.g., code tracing) and questions
where such software is allowed (e.g., code writing) on the same
exam, increasing the burden on such an approach. Second, it may
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Input a list of at least 3 elements for arg_list such that 
rval is 3 after the code executes.

arg_list = 

def list_func(li, x):
    for i in range(len(li)):
        if li[i] > x:
            return i
    return -1

rval = list_func(arg_list, 17)

def list_func(li, x):
    for i in range(len(li)):
        if li[i] > x:
            return i
    return -1

rval = list_func([0, 13, 22, 4, 31], 17)

What is the value of rval after the code above executes?

rval = 

a) b)

Figure 1: Example tracing (a) and reverse-tracing (b) questions. Tracing questions are intended to assess whether students can
execute code in their head.
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Figure 2: With access to code execution on a computer,
subjects could always solve code tracing problems in the
computer-format, independent of their ability to complete
them on paper.

be not practical or worth the students’ animosity to use such a
heavy handed approach [35].

An alternative approach would be to identify a different question
formulation that assesses the same skill as code tracing questions,
but does so in a manner that is less susceptible to brute-forcing
with code execution. To this end, we explore what we refer to in
this paper as “reverse-tracing” problems. Reverse-tracing problems
(as shown in Figure 1b) ask students to select an input value for a
provided fragment of code so that it results in a specified output
after the given code is executed. Such problems cannot be simply
executed to find an answer, as doing so will result in an undefined
variable if the student doesn’t propose a candidate answer.

In this paper, we explore to what degree reverse-tracing prob-
lems can act as substitutes for tracing problems on computer-based
exams. Specifically, we consider the following research questions:

RQ1. How do students use code execution when solving tracing
problems?

RQ2. How do student problem solving methods for tracing prob-
lems compare to those for reverse-tracing problems on pa-
per?

RQ3. How do students use code execution when solving reverse-
tracing problems?

To explore these questions, we performed a series of within-
subjects ‘think-aloud’ interviews where students answered trac-
ing and/or reverse-tracing questions in both computer- and paper-
formats while vocalizing their thoughts. Our research methods are
presented in Section 3. Our findings (Sections 4 and 5) can be briefly
summarized as follows:

(1) Students executed code on tracing problems in both what we
view as productive ways (e.g., checking answers, exploring
semantics) and in ways that circumvent the intent of the
problem (e.g., mindless execution of the given code).

(2) Solving reverse-tracing questions on paper has both similar-
ities and differences to tracing questions.
• For smaller and non-iterative code fragments, it appears
that largely the same skill set is being used, but students
construct a specification for the desired answer before
selecting a specific answer.

• For more complex code, especially with non-trivial loops,
solution strategies diverge. Whereas book-keeping is the
most common strategy for complex tracing problems, the
students who successful solved complex reverse-tracing
problems often constructed a high-level understanding of
the code that allowed them to identify candidate answers.

(3) While students used code execution in the same produc-
tive ways on reverse-tracing problems, the circumvention
strategies were different. We observed both:
• random guessing, particularly around small positive inte-
gers and features of the provided code.

• pattern recognition of how the output related to the input
that didn’t involve understanding the code

Overall, we found that students’ ability to complete reverse-
tracing questions on the computer was more correlated to their
ability to do so on paper than was true of code tracing problems.



That said, in our collection of problems, there were problems that
were susceptible to circumvention strategies (i.e., some students
got the correct answer without understanding the code). In the
discussion (Section 6), we suggest principles to question design that
can partially mitigate these strategies.

2 RELATEDWORK
2.1 Exam mode: Paper vs. Computer
A few studies found that student performance between paper and
computer assessments significantly differed in some code writing
problems, potentially introducing unwanted advantages or disad-
vantages to students. Corley et al. found that CS 1 students’ problem
solving ability was largely unaffected by the different assessment
formats in code writing tasks, and that student ability to correctly
write syntax was significantly worse in the paper-and-pencil ver-
sion [11]. Similarly, Lappalainen et al’s study found that CS1 stu-
dents in both paper and computer groups had similar performances
in terms of understanding on a Rainfall code writing problem, but
the paper group had more syntax and minor cosmetic errors (e.g.,
misspelled variable name) [30]. In contrast, Grissom et al. found that
CS 2 students’ solutions demonstrated higher levels of understand-
ing in the computerized formats when writing implementations
of recursive binary search trees [20]. As students in the computer-
format groups had access to Integrated Development Environments
(IDEs) [11, 30], it is not surprising that students had fewer syntax
errors, because IDEs can highlight and auto-correct incorrect syn-
tax, but the mixed results related to understanding/problem solving
are harder to explain. Computer-based exams can also benefit in-
structors with auto-grading and automatic analysis of students’
learning progress [45].

Prior work has explored students struggles with learning to
use IDEs, using both qualitative and quantitative methods [5, 6].
Students’ struggles with IDEs provides some insight to how com-
puterized formats for code writing problems could have a negative
effect compared to paper-formats.

It is also noteworthy that past studies that evaluated the perfor-
mance difference between computerized and paper assessments
only evaluated the product of student work and not the process in
which it was generated [11, 20, 30], in contrast to the current work.
Also, these previous studies evaluated the differences only on code
writing problems, while our study focuses on code tracing (and
reverse-tracing) problems. We expect that a shift to computer-based
exams has a qualitatively different impact on code tracing problems
(compared to code writing, Parson’s problems, and “Explain in plain
English” problems), because the other common CS 1 problem types
are not as susceptible to brute-force machine execution.

2.2 Code Tracing
Past studies have found that if students can trace, or hand-execute,
code then they are more likely able to read code (understand code by
reading it without manual execution) and are also more likely able
to write code. Tracing tends to be a precursor to reading [46] and
both tracing and reading tend to be precursors to writing [23, 28,
29, 32, 33, 46, 48], making it important to ensure that our students
are developing the foundational skill of code tracing.

Past qualitative think-aloud studies of tracing on paper found
that students who correctly kept track of the values of variables as
they change per line of code in tracing problems tend to perform
better than students who do not. These studies found students
writing the values of variables and their changes each iteration
on paper [13, 14, 31, 52]. Cunningham et al. found that the reason
students kept track of variables is due to having too many variable
dependencies and arithmetic in the code. Students also tended
to keep track of variables if they traced code incorrectly initially
[14]. Vainio et al. found students using an incorrect tracing strategy,
“single value tracing,” where students kept track of themost recently
assigned value of any variable to at most one variable [47]. To the
best of our knowledge, there are no studies related to completion
of code tracing questions on computer-based assessments.

While the most common tracing errors are related to incorrect
(or the lack of) variable bookkeeping, other errors in tracing exist,
such as (1) arithmetic errors [14], (2) guessing based on an incorrect
but common pattern that doesn’t apply to the specific problem
[19], (3) incorrect order of execution [26], (4) spending too much
time on irrelevant parts of code and then running out of time, and
(5) making incorrect assumptions about programming language
concepts (e.g., for loops repeating the entire program instead of
only what is inside its block) [47].

2.3 Beyond Line-By-Line Tracing: Higher-level
Reading

Brooks proposed a top-down model towards program comprehen-
sion, where the programmer creates an initial hypothesis of the
program based on their domain knowledge (real-world knowledge
of the problem the program aims to solve) and their programming
language knowledge [7]. The specificity of this initial hypothesis
varies across programmers and domains, but these initial hypothe-
ses typically cover at least the inputs, outputs, major data structures,
and primary processes not including implementation-level details.
Then, the programmer creates subsidiary hypotheses to explore
specific details needed to validate the parent hypothesis, and this
process hierarchically repeats until subsidiary hypotheses cover the
implementation-level details. The programmer may also compare
and contrast any subsidiary hypotheses to alternatives to refine
their understanding of the program.

Complementing Brooks’ model, Pennington proposed a bottom-
up model where if the programmer is unfamiliar with the problem
the code solves (e.g., fails to create an initial hypothesis), they cre-
ate a lower-level control flow model first [38]. In this model, they
group together chunks of code based on their control flow rela-
tionships. From there, they create a higher-level data-flow model
(inputs, output, functions) where they can then integrate domain
knowledge. Sub-goals are chunked together towards creation of the
data-flow models. Throughout our interviews of our more complex
reverse-tracing problems, we see programmers employ a mix of
both Brooks’ top-down and Pennington’s bottom-up models, where
the programmer starts with a low-level control flow analysis (con-
straints), and then states a higher-level hypothesis description of
an answer (e.g., Section 5.2.3).

Detienne et al. define two strategies for comprehending pro-
grams: symbolic simulation and concrete simulation [17]. Symbolic



simulationwas used initially by all participants in their study, where
participants attempt to connect code to a prior learned “plan” (or
stereotypical action sequences). If they are unable to apply a plan
to the code (e.g., the code is unfamiliar, or the closest matching plan
does not align well enough), then participants may resort to the
concrete simulation strategy. Concrete simulation is a line-by-line
mental execution of the program, with the goal to verify that prior
learned plans align in all interactions (e.g., all possible inputs). They
also define other strategies, such as reasoning according to “rules
of discourse” (i.e., using one’s practical knowledge about how code
is generally written) and “principles of the task domain” (i.e., non-
programming knowledge about the task’s context) in the situation
that no plan aligns with the code to create a new plan. We have
one instance where a participant applied symbolic simulation on
one of our problems (e.g., Section 4.3), and other instances where
many participants applied concrete simulation (e.g., Section 5.2.1).

Gugerty et al. studied how novice and expert programmers modi-
fied code to fix a bug. Both novices and experts begin by reading the
code and making an initial modification to the code in an attempt
to fix the bug. Novices often had an initial incorrect fix (modifica-
tion) and created more bugs in the code, contrary to experts who
often had an initial correct fix. This may demonstrate that experts
often created a correct initial hypothesis of the code after reading
it, because they had an idea of what the bug in the code was and
proposed a fix [21]. In an eye-tracking study, Busjahn et al. found
that novices read code more linearly (top-to-bottom, left-to-right,
like reading English text) than experts, suggesting that experts are
more strategic in how they read code to comprehend programs (e.g.,
following execution order and relevant parts of code) [9]. We see
examples of both linear and non-linear (e.g., execution order) reads
of code in our problems (e.g., Sections 5.2.1 and 4.3 respectively).

In another eye-tracking study, Crosby et al. found that experts
(moreso than novices) identified and utilized beacons to understand
programs. Beacons include code comments, descriptive identifiers
revealing the program’s purpose (e.g., variable and class names), and
the lines of code that are central to the algorithm of the program
(e.g., the most informative line/lines of code) [12]. Bednarikn et
al. conducted a debugging, eye-tracking study where novice and
expert programmers were given a diagram (UML) representation
of the code in addition to the code. They found that novices often
relied on the diagram representation, and were often unable to fix
bugs in code after later reading the output of the code. Experts,
on the other hand, relied mostly on just the code and the output,
and systematically connected parts of the code to the output [3]. In
some of our interviews, participants used the online IDE, repl.it,
to view the outputs of our reverse-tracing code, and then reasoned
based on the output (e.g., Section 5.3.2).

2.4 Alternative Question Formats to Tracing &
Higher-Level Thinking

Izu et al. asked students to evaluate whether four program trans-
formations were equivalent (e.g., all possible inputs leads to same
corresponding output). Relative to ordinary tracing questions, this
type of question seemed to encourage students to think at a higher-
level, classified based on the SOLO Taxonomy relational level [4, 15]
(purpose of a program in plain English), and the block model above

the atomic level [42] (ranging from the main purpose of a program
to analyzing relationships between lines of code and different execu-
tion paths) [24]. Similar to their findings, our more complex reverse-
tracing questions also seemed to elicit higher-level explanations
from students (e.g., Section 5.2.3), while our simpler reverse-tracing
questions had many instances of line-by-line hand-execution (Sec-
tion 5.2.1).

In another study, Izu et al. asked students to evaluate whether
different programs can be “reversed,” which means that the code
can be modified such that it restores the value of variables to a
previous state (e.g., output of program changes back to value of
input). The concept of finding whether code is reversible involves
finding an “overlap” of inputs, which means at least two different
inputs lead to the same output [34]. Many of our findings of our
reverse-tracing problems also have overlaps in inputs in the form
of input specifications (multiple possible inputs to get a specified
output), which are highlighted in Sections 5.2.2 and 5.2.3.

While we do not claim to have invented reverse-tracing problems,
we are not aware of any previous research literature related to them.

3 METHODS
We conducted a series of think-aloud studies to observe the process
students (the participants) use to solve code tracing and reverse-
tracing problems across paper- and computer-formats.

3.1 Participants
This paper reports on the analysis of 13 think-aloud sessions.1 The
participants were undergraduate students recruited from a Python-
language introductory programming course for non-computer sci-
ence majors at a large public U.S. university. The participants in-
cluded nine males and four females and were traditional aged un-
dergraduate students (e.g., age 18-23). With IRB permission, we sent
email to students completing the course in Spring and Fall 2020
to solicit volunteers. Participants consented to audio and screen
recordings of the sessions. Participants were given $15 gift cards as
compensation for participation in this nominally 1-hour study.

3.2 Process
The think-aloud sessions were done for each participant one-by-one.
The sessions took place over Zoom video conferencing software
due to COVID-19. Every participant was asked to complete a series
of Python language tracing and/or reverse-tracing problems. In
all interviews, approximately half of the problems were in the
paper-based format and the other half were in a computer-based
format, with the exception of one interview where the participant
completed all computer-based questions but ran out of time after
the first question on the paper-format. Five of the sessions had
both tracing and reverse-tracing questions and are the focus of
the results that are presented in Section 4. The remainder focused
exclusively on reverse-tracing problems; all interviews contributed
to the results in Section 5.

In the paper-based format, students typically positioned a cell
phone to record what they wrote on paper or wrote on a tablet

1Additional sessions were conducted during which the study protocol was revised.
Nothing from those sessions contradicts the findings presented here, but those sessions
were not analyzed to the same depth.



screen shared to Zoom. Questions were shared by the interviewer
to the participants via Google Docs; participants were asked to not
use their computer for any purpose besides viewing the problem.

In the computer-based format, questions were provided either
by Google Docs (early interviews) or through the PrairieLearn
assessment platform [49, 50] used in the class the subjects were
recruited from (later interviews). In addition, it was communicated
to students verbally (early interviews) or through instructions on
PrairieLearn (later interviews) that students were allowed to use the
repl.it [40] web-based Python interpreter. In some interviews, the
interviewer reminded participants that using repl.it was allowed.
The interviewer tried to walk the fine line between ensuring that
the participant knew that use of a Python interpreter was allowed
without compelling its use by participants.

The questions covered a range of topics and difficulties. For each
kind of question—tracing and reverse-tracing—we attempted to
create two matched pools (A and B) of questions by constructing
pairs of questions that had similar topic coverage and difficulty
and assigning one to each pool. In large part, the reverse-tracing
questions were generated from the tracing questions by choosing a
desired output and selecting one input variable to leave undefined.

In order to mitigate any potential sequencing effects in the data,
half of the subjects completed the paper-format first and the other
half completed the computer-format first. For those subjects that
had both tracing and reverse-tracing problems we also randomized
the order of the two types of questions. Finally, across the subjects,
we varied which pool (A or B) was used for the computer-format,
with the other pool being used for the paper-format.

Throughout the whole session, participants were encouraged
to verbalize their thought process. Our think-alouds followed the
protocol of Ericsson et al. for recording unstructured verbaliza-
tions [18]. Their approach aims to minimize the extra cognitive
effort required to verbalize thought processes out loud to help pre-
vent any unknown and unwanted third factors from impacting
student performance. Participants were only asked to say what was
currently on their mind as they were solving the problems and were
not asked to explain nor interpret their thought process for our
benefit [18]. If participants were silent for more than 2-3 minutes,
they were reminded to think-aloud. They were trained until they
were comfortable with the process of thinking aloud.

Participants were given as much time as they needed to solve
each problem, but if they appeared to be stuck on the problem for
more than 2 minutes (appearing to make no progress), they were
encouraged to try a different problem. After half of the interview
was complete, they had the option of a 5-10 minute break. After
the study was complete, the participants had the opportunity to
ask any questions about the study.

3.3 Analysis
For the first five think-alouds, the audio portion of each recording
was transcribed and composited with still images from the Zoom
recording showing the computer screen or paper state at impor-
tant events. The transcripts were inductively coded independently
by two researchers in groups of 1-3 transcripts at a time. After
coding each group of transcripts, the two researchers met to dis-
cuss the coding and reconcile differences in coding. They discussed

and agreed on examples and counter-examples for new emerging
categories.

The remainder of the think-alouds were coded directly from the
video. Again, two researchers inductively coded the source material
independently in groups of 1-3 videos. After coding each group
of videos, the two researchers met to discuss and refine emergent
themes.

4 RESULTS: TRACING
As previous work has focused on how students solve tracing prob-
lems on paper, we focus here on comparisons between paper and
computer tracing, how students use code execution when solving
tracing problems, and a technique we saw students use to solve
tracing problems consistent to the behavior of novices at the Neo-
Piagetian concrete operational stage in Teague et al’s study [46], as
well as the “symbolic simulation” strategy in Detienne et al’s study
[17].

4.1 Tracing performance: computer vs. paper
We analyzed five sessions where students worked on tracing prob-
lems. On paper, the performance of the four participants that at-
tempted all problems varied from 33% to 80%. A fifth student, who
ran out of time before completing all problems, correctly solved
every problem that they attempted. In contrast, all of the students
were able to compute correct answers for every problem when they
had access to repl.it. The relationship between the student scores
in each mode are plotted in Figure 2. While the number of students
observed for tracing was small, it was sufficient to demonstrate that
there is likely a weak correlation between students’ ability to com-
plete tracing problems on paper and on computer. As a result, we
chose to focus the rest of the interviews solely on reverse-tracing
problems.

While students can earn full credit on code tracing problems
through computer-assisted code execution, they may not be able to
do so as quickly as someone solving them throughmental execution.
Standard ways of presenting questions to students electronically
(e.g., both PDF and in the browser) can be set up to prevent trivial
copy-and-paste, so that students have to take the time to re-type the
code to get the computer to execute it. This time penalty might be
meaningful on a timed exam, but we do not attempt to characterize
it here.

4.2 How students use repl.it on tracing
problems

We observed three main behaviors of how participants chose to
use repl.it while solving tracing problems. We characterize these
as: (1) students checking answers that they discovered manually,
(2) students using repl.it to verify specific semantic properties of
Python, and (3) executing the code on repl.it before understand-
ing it. We discuss each of these in the following subsections, but
we make no attempt to characterize the relative frequency of each
behavior. We strongly believe that the presence of the interviewer
induced a social-desirability bias [27] in at least some of the partic-
ipants that led them to behave differently than they would in an
exam situation without someone watching their specific actions.



Figure 3: Student writes code in repl.it merely to test the
behavior of the string.uppermethod.

4.2.1 Double-check a complete solution. This category covers in-
stances when participants first attempt to completely solve the
tracing problem without the aid of repl.it. They either provide
a specific value for the output or a complete description of the
solution where the researchers could easily infer a value. The de-
scription or value may be an incorrect solution, but displays a
complete tracing attempt.

After determining an output, participants in these instances enter
the code into repl.it in order to check their answers against the
execution’s output. While we would consider this, in principle, to
be productive way to use code execution on tracing questions, if
the student’s answer was incorrect, the code execution provides
the correct answer (bypassing the student having to figure out why
their answer was wrong and what the correct answer should be).

4.2.2 Execute Code to Remember How Certain Constructs or APIs
work. Examples in this category occur when participants appear
to forget how certain language constructs (e.g., return) or built-in
API methods (e.g., string uppermethod) behave in Python. In these
instances, they execute code in repl.it that is either a small subset
of or distinct from the question’s given code, in order to remember
how those constructs or methods work or how to use them.

For example, Participant 1 read the code from one question aloud,
then appeared unsure of what the string.uppermethod did. They
decide to check upper by testing a sample string rather than run-
ning the entire provided code fragment, as shown in Figure 3.

If I really want to learn I could just test what upper
does by putting the word upper. I think that’s how
upper works. And then find out what happens to that
word. (runs code) Blaringly obvious. OK, so upper
does capitalize every single letter. So now I know for
a fact that I can. I can literally predict what’s going
to happen here without even running it.

This particular student may have chosen to execute a fraction
of the code instead of the whole due to the aforementioned social-
desirability bias. They express that they feel just executing the
whole code fragment in repl.it is cheating.

I feel like repl.it is just giving me the answers to ev-
erything even before I (pause) Like, I even say (pause)
should I do that? ’cause I feel like I’m just cheating
by putting it on repl.it. Like, it’s just giving me the
answers to everything.

Nevertheless, we consider this behavior of exploring the lan-
guage syntax to be productive, as the student might gain knowledge
during the exam.

4.2.3 Execution before seriously attempting to understand the code.
Examples in this category involve instances where participants

def f(li, h):
    x = 0
    for c in li:
        if h in c:
             x += 1
    return x

print(f(["John", "Mary", "Jackie", "Crab"], "J"))  

Figure 4: Example tracing question that counts the number
of strings with a given letter.

make no attempt or only half-hearted attempts to trace the code
manually before copying the code to repl.it. Multiple participants
verifying with the interviewer that this was allowed.

Participant 2: So I can use [repl.it] in any way I
want? Alright, I would honestly probably just copy
and paste it and see what comes up. (executes code)

Participant 4: What is the output when the following
code snippet is run? Alright, so I can just copy this
and find the output? (executes code)

After running the code, participants tried to explain to the inter-
viewer why the answer received from repl.it was the correct one.
In some cases, their explanations demonstrated an understanding
of why the output was produced. In other cases, they were unable
to provide a correct explanation in spite of having the correct out-
put. In a few cases, students did not even attempt to explain the
code. Unsurprisingly, we find this to be an undesirable use of code
execution.

While one might expect that it would be the students that per-
formed theweakest on the paper-based tracing questions that would
be the most prone to skip trying to solve tracing questions manu-
ally and turn directly to repl.it, we saw no such pattern. On the
contrary, Participant 2 and 4 exhibited this behavior in nearly all
of the computer-based tracing problems, but had the two highest
scores of students that completed all of the paper-based questions.
Use of this strategy by a participant during our interviews, however,
may not be predictive of its usage in an actual exam situation.

4.3 Solving tracing problems through building
a mental model

In a few cases, we saw students exhibit a behavior similar to novices
operating at the Neo-Piagetian concrete operational stage described
in Teague et al’s study [46]. Students at the concrete operational
stage would abstractly trace code using sets/ranges of values rather
than individual concrete values and/or reason about the constraints
on/relationships between values (e.g., x must be greater than y on
a path where x > y evaluated to true).

In one such instance, Participant 3 was reading the code shown
in Figure 4. They read the code from the function invocation to
the function definition, consistent to how experts read code non-
linearly (e.g., execution order) in Busjahn et al’s eye-tracking study
[9]. As they read the code, they were recognizing constraints based
on the code structure (datatype string, if “J” in string name),
piecing together the overall purpose of the function.



We are taking a list of strings—looks like they’re
names possibly—and then a single character. x (pause)
Here we’re doing it like a counting algorithm. So for
c in list– So, for every single name– if h Okay, so
if the letter “J” is inside the name, we’re going to
increment our count by one.

Once they have inferred the purpose of the function—what might
be referred to as a relational understanding of the function in the
SOLO taxonomy [4, 51]—they then apply their understanding of the
function’s purpose on the input data rather than stepping through
the code line-by-line.

Okay, so (referring to “John”) 1, and (points to “Mary”)
no “J” in there. (points to “Jackie”) 2. (non-verbally
dismisses “Crab”) So it’s going to output 2, I think.
Yeah.

This is also consistent with the findings of Detienne et al [17], in
which the student performed “symbolic simulation” by recognizing
and forming a “plan” of the code for solving the tracing problem,
which is the “counting algorithm” plan. In hindsight, this might be
due to the design of some of our tracing problems. We intended
to design the code of our tracing problems without a purpose, so
as to specifically assess the detailed book-keeping skill, but this
example may be an unintended exception. We in part point out this
behavior in tracing questions because we see a similar behavior in
some of the more complex reverse-tracing questions, as discussed
in Section 5.2.

5 RESULTS: REVERSE-TRACING
In this section, we shift our focus to reverse-tracing questions. We
present data that suggests they are less susceptible to brute-force
execution on computer than tracing questions, we characterize the
tools that students use to solve them on paper, and discuss how
students used repl.it when solving them on computers.

5.1 Reverse-tracing performance: computer vs.
paper

For comparing the student performance on reverse-tracing ques-
tions in the computer-format and paper-formats, we use the eight
most recently analyzed sessions. The earlier sessions only included
the easier versions of reverse-tracing questions (as this question-
format was newly introduced to the course at the time), so those
participants all received perfect or near perfect scores from both
modes. We later created reverse-tracing problems that matched
the difficulty of our tracing questions. In contrast to the tracing
questions, our participants on the computer-based reverse-tracing
questions had a wide range of scores, as shown in Figure 5.

While we have far too few data points to compute a statistically
meaningful correlation coefficient, qualitatively it can be seen that
there is a much stronger correlation between formats for reverse-
tracing problems than for tracing problems. For five of the students,
the correlation is particularly strong. For the other three students,
their performance on the computer-format questions is roughly
40% higher than the paper-format. In two cases, these students suc-
cessfully employed the gaming strategies described in Section 5.3.
In the third case, the student merely made careless errors in the
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Figure 5: Access to code execution had less impact on stu-
dents’ ability to complete reverse-tracing problems.

What value should variable y be so that the variable x becomes the integer 16?

x = 3
if x < 11:
    x += 5
if x == y:
    x *= 2

Figure 6: Simple, non-iterative reverse-tracing question fo-
cused on understanding of conditionals.

paper-based questions; had the student made those errors on the
computer-based questions they would have detected the mistake
in repl.it and fixed their answer before submitting.

5.2 How Students Solve Reverse-Tracing
Problems

In order to complement the extensive prior work on how students
solve tracing problems [13, 28, 31–33, 46, 47, 52], we will attempt
to characterize how participants solve reverse-tracing problems.
In particular, this section will focus on how they were solved on
paper, and, in Section 5.3, we’ll present how subjects used repl.it
as part of their solution process. We identified three main concepts
about their solutions:

5.2.1 Smaller and non-iterative code fragments are analyzed simi-
larly to tracing problems. When a reverse-tracing problem involves
a relatively small amount of code, especially if it doesn’t involve a
loop, we find that the reasoning process has significant similarities
to what is observed in tracing. Subjects consider the code one line
at a time, computing the state of variables as they progress.

For example, the code shown in Figure 6 is only five lines long
and was designed to test a student’s ability to trace if statements,
potentially before the course introduces loops. Participant 5 solves
this problem by tracing the code forward, performing book-keeping



Figure 7: Participant 5 appears to sketch a line-by-line trace
of the code, and wrote the correct value for the variable y
that makes the second if block True to obtain the correct
result of x = 16.

of the variable x’s value as they proceed. When they reach the sec-
ond branch, they have to look ahead to see which branch outcome
will lead to the desired result, but the code is short enough that this
can be quickly identified and the desired direction of the branch is
identified. A screen shot of the participant’s written work is shown
in Figure 7.

The goal is to get x equal to 16. So x is 3. Because
3 is less than 11, we add 5 to x. So after the first if
statement, x equal to 8. And then we say, if x is equal
to y (pause) then we multiply x by two and x is set
equal to that value 16. So I’m thinking that y would
have to be equal to 8.

While the above example is largely traced in the forward direc-
tion, some pieces of code are more naturally traced in the reverse
direction. While addition and subtraction are (largely) reversible
operations, many operations are not, which motivates the second
observation.

5.2.2 Reverse-tracing problems don’t necessarily have a single an-
swer; they require identifying answer specifications. For many oper-
ations, there are many possible inputs that result in a given output.
For example, with Python’s floor division, which rounds down to
the closest integer, there are three values of z where z // 3 will
equal 5, namely 15, 16, and 17. Similarly, there are many strings
that have a length of 13 characters and lists of integers that sum to
53.

So when tracing a statement backwards, it is not always possi-
ble to identify the input to a statement. Instead, we hear students
describe what we’ll refer to as specifications for values at particular
points in the execution. They’ll describe properties that values need
to have. Once they reach the beginning of the computation, they’ll
select a specific value that meets the specifications and that will be
their answer. This process is similar to the behavior that novices at
the Neo-Piagetian concrete operational stage exhibit when solving
tracing problems described in Teague et al’s study [46] (described
above in Section 4.3).

What value should variable y be so that the variable x becomes the integer -3?

x = -3
animals = ['mink', 'alligator', 'butterfly', 'porcupine']
if y not in animals:
    x += -2 (a)

(b)

Figure 8: A reverse-tracing question where there are many
possible correct answers (a), and participant 5’s notes when
solving this question (b).

Input a list with at least 3 elements for k such that the output of the code below is 2

k =

x = k
i = 0
sum = 0
limit = 20
while sum < limit:
    sum = sum + x[i]
    i += 1
print(i)

Figure 9: A reverse-tracing question that is difficult
to reverse-trace using bookkeeping. Successful students
traced/read the code in a forward direction to build amental
model of it that they then use to identify a suitable input.

For example, when participant 4 solved the problem in Figure 8a,
they reasoned first that since y is being checked for membership
in a list of strings that it must be a string. Then they reasoned that
they wanted the if condition to be false, so that x would keep its
value, and that specified that y needed to be one of the values in the
list animals. The specification for y is successively refined until a
particular value can be selected (e.g., “mink”).

y is a string. We want y to be in animals so that the
next thing doesn’t go in [and] x remains negative 3.
So we would want y to be equal to possibly a string
“mink”.

5.2.3 Summarizing code to reverse-trace complex code. For complex
code fragments, especially those containing loops, it can become
difficult for our subjects to predict the flow of control backwards
and keep straight the specifications for the variables. For these
more complicated code fragments we see successful students shift
strategies: they trace/read the code in a forward direction and
attempt to build a mental model of the code which they can use to
identify a suitable input.

Participant 11 demonstrates this process on the problem shown
in Figure 9. From their verbalizations, one can see that they’re
piecing together what the code is doing bit by bit and then reasoning
about what must be true about the input in order to achieve the



Input a value for arg_num such that rval is 2.

arg_num = 

def list_func(li, x):
    for i in reversed(range(len(li))):
        if li[i] == x:
            return i
    return -1

rval = list_func([1, 2, 6, 9, 10, 14, 16, 17], arg_num)

Figure 10: A reverse-tracing question thatmany participants
struggled with because of reversed(range(len(li))).

correct output. They complete the problem by selecting a particular
input that meets the derived specification.

For every element in the list k ... we compound the
numbers in the list k to a maximum of 20. If it hits 20,
it stops. ... The max sum can be is 20 for it to actually
run ... So the max it can have is 20 and the code has
to have 2. So, the first two elements of the list, it has
to hit that number. So 10 comma 11 comma 5. (writes
[10, 11, 5]) Is that the right answer?

5.3 How students use repl.it on
reverse-tracing problems

Students’ use of repl.it on reverse-tracing problems has some
similarity to its use on tracing problems. In particular, there is a
lot of usage to check whether an answer is correct. In these cases,
the subject will copy the code to repl.it, edit it to provide their
predicted input value, and then execute the code to see if it produces
the desired output. This scenario strongly correlates to the one
presented in Section 4.2.1, except that if their answer is incorrect
they do not automatically receive the correct answer.

Furthermore, we also observed instances where students used
repl.it to review aspects of Python semantics or its API as dis-
cussed in Section 4.2.2. We consider these two behaviors to be pro-
ductive because they don’t permit trivially solving reverse-tracing
problems.

While we saw no direct counterpart to the brute-force execution
described in Section 4.2.3, we observed two other behaviors that
students attempted to use to correctly answer questions where they
could not trace the code. We discuss these next.

5.3.1 Random guessing. Some participants repeatedly executed
code on repl.itwith answers based on seemingly random guesses.
In these instances, subjects showed little comprehension of the code.
For example, they may try different data types one after another
looking for one that doesn’t cause syntax errors, or cycle through
values of a given data type only checking to see if they produce
the desired output. Sometimes the participant tries answers with a
variety of distinct characteristics (e.g., even/odd, positive/negative,
large/small).

This guessing process is demonstrated by participant 6 successful
attempt to complete the question in Figure 10. We discuss common
guessing strategies in Section 6.

Input a list for k such that k's value after the code below executes is [5, 6, 5]

k =

y = k[1]
k[1] = k[0]
k[0] = 5 * y

Figure 11: Participant 10 answers this question correctly af-
ter iteratively revising an initial guess of a solution.

Let’s start off with trying this and see what happens.
(Tries input 0, Output is -1; incorrect, desired solution 2)
(Tries input 1, Output is 0) (Tries input 2, Output is 1)
Do that.
(Tries input 3, Output is -1)
Maybe I should just try doing even numbers.
(Tries input 4, Output is -1)
No? Try negative numbers that way.
(Tries input -2, Output is -1) (Tries input -1, Output is
-1) (Tries input -5, Output is -1)
Noo, I feel like I am on to something though.
(Tries input 10, Output is 4)
Oohh lets see.
(Tries input 5, Output is -1)
So. (Tries input 6, Output is 2, correct solution)
Hold up. Hahahahaha, Nice.

Even when it is possible to obtain credit for doing reverse-tracing
problems through random guessing using code execution to check
one’s guesses, it can be hard to predict how many guesses and,
hence, howmuch time will be required. This is in contrast to tracing
problems where students can type and execute the code to obtain
the correct answer in a predictable amount of time.

5.3.2 Output-based reasoning. Some participants used repeated
repl.it executions and educated guessing in an attempt to learn
the relationship between the code’s input and output—akin to a
transfer function—without understanding code itself. Starting with
a guess for the input (sometimes the expected output itself), par-
ticipants use feedback from the computed output to refine their
guess towards a correct solution. For example, participant 10 solves
a problem shown in Figure 11 by guessing an initial input (the
list [1,2,3]) then reads the output and iteratively revises their
solution until they get the problem correct.

List equals 1 2 3. I just want to see how this works.
(Tries input [1,2,3], Output is [10,1,3], incorrect
from desired solution [5,6,5].)
Umm, for it to come out with 5 6 5. Umm, where does
the y come in? So if 5 is multiplied by this (points at
index 0 in initial answer [1,2,3]) so k[0] equals 1 and
this (k[1]) equals that (index 1 of [1,2,3]).
(Tries input [1,1,3], output is [5,1,3], incorrect but
closer to the desired output [5,6,5].)
k[1] is equal 6. I wonder if that changes–
(Tries input [6,1,3], incorrect output [5,6,3], but
even closer to desired output [5,6,5].)
Oh and this would just be–



(Tries input [6,1,5], gets correct output [5,6,5].)

In another instance, participant 14 traces a computer-based ver-
sion of the question in Figure 9, except where limit is equal to 9.
They start tracing the code manually, but seeming uncertain. Then,
they copy the code to repl.it and try an initial answer of [3,4,5]
which is incorrect but close to the desired output (incorrect output
3, desired output is 2).

(After trying [3,4,5])
Oh, oh, my god, this has to be greater than 9. Oh, I
can’t put 10. What am I thinking?
(Tries [3,4,12] on repl.it, leads to same incorrect out-
put 3.)
Sum. Sum is what? Oh, wait, it doesn’t matter. Uhh
15.
(Tries [3,15,12] on repl.it, leads to desired output 2,
gets question correct.)

In both examples, the code has become secondary to the out-
put computed by repl.it as a means for solving the question. In
both instances, some knowledge of the code was used to reason
out the solution, but neither student seemed likely to correctly
answer the question without repl.it’s assistance. This is similar
to the findings of Bednarikn et al’s eye-tracking study where expert
programmers debugging code related the code to the output system-
atically [3]. While this behavior is preferable to tracing questions
where the answer can be directly computed from the provided code,
it would be useful to be able to design questions that mitigate this
solution approach.

6 DISCUSSION
While the number of participants is on the low side, as is to be
expected in a qualitative study like this, we can see that there is a
qualitative difference between tracing and reverse-tracing question
in students’ ability to trivially identify correct answers on computer-
based versions. While reverse-tracing questions are not completely
without potential exploits, exploiting them seems to require a larger
body of computing knowledge on the part of the student. So from
the perspective of identifying a question type that is resilient to
computer-based exams, we are cautiously optimistic.

It is less clear, however, that reverse-tracing questions are equiv-
alent pedagogically to tracing questions. Our impression is that
the simpler questions—the ones that you might deploy in the first
third or first half of the semester—may be sufficiently equivalent
pedagogically. As participants were solving these reverse-tracing
problems, they showed many problem-solving strategies that ap-
peared similar to tracing strategies found in prior work. For exam-
ple, in Figure 7, the participant applies two sketching strategies
identified by the Leeds Working Group, Computation and Trace
[31]. Computation is the process of writing a value based on an
arithmetic or compound Boolean expression. Trace is the process
of keeping track of variables as they change line-by-line through-
out the program. After the participants proposed an input value,
they performed the Trace (strategy) consistent with prior sketch-
ing studies [13, 14, 31, 43, 47, 52]. Figure 7 also demonstrates the
Rewrite strategy identified by Cunningham et al [13], where the
participant rewrote the code on paper. In general, we see students

solving those questions at the granularity of individual statements,
and scanning forward and backwards a few lines of code and con-
sidering a small number (e.g., ≤ 3) of control flow paths seems to
not excessively burden the students that are successful with solving
tracing problems on paper.

As the complexity of the reverse-tracing question grows, how-
ever, it appears that the skill being tested might diverge from that
of complex tracing questions. The exponential growth of control
flow paths and possible states of variables quickly becomes too
much for novices to maintain in working memory. Instead, those
students able to successful solve these harder problems seem to
shift to trying to read the code and build a mental model of it.
In this regard, these complex reverse-tracing problems may end
up assessing students more similarly to “Explain in plain English”
questions [51] than tracing questions. Exploring this possibility is
interesting future work.

Finally, in our observations of students’ attempts to outwit our
questions, we observed that some of them were easier to exploit
than others. We summarize some common guessing patterns and
other question pitfalls here, as a service to anyone attempting to
write reverse-tracing problems that are potentially less prone to
exploits:

(1) Participants had the most success randomly guessing inputs
that were small, positive integers (e.g., 1–9). When problems
clearly had numerical answers, participants seemed more
prone to guessing small, positive integers.

(2) Because reverse-tracing problems may have multiple correct
answers, be careful that problems with numerical answers
don’t have large continuous ranges. One formulation of our
problems had the correct answer be any number greater than
40, which meant that any random guess of a large, positive
was a correct answer.

(3) Avoid having the answer be a feature of the problem. In
one problem that included a list as a given parameter, a
participant guessed every value in the list as a possible value
for the scalar answer. Similarly, a problem like Figure 8a
could be problematic because obvious guesses include the
values in the animals list and any string not in the list, but
we never actually saw a student engage in this strategy.

(4) Avoid questions where there is a piece-wise relationship
between the input and the output, like the question shown in
Figure 11. These questions permit students to independently
test each component of the input to find the correct value
for the desired output.

7 LIMITATIONS
Like any study, this work has obvious limitations. First and foremost,
we had a relatively small sample size of participants due to the large
time commitment to coordinate, run, and analyze each session. In
addition, our participants were self selected from the pool that we
recruited from. It is likely that our participants were on average
among the stronger students in the course, because they had the
confidence to participate in a study related to skills learned in the
course. As such, we might not have an accurate picture of how the
course as a whole would perform on our questions.



Another notable limitation of the study is the presence of the
interviewer during the sessions. Even in a proctored exam situation,
the proctor would rarely be directly observing a student’s work,
so our participants likely behaved somewhat differently than they
would have on proctored exam, due to social-desirability bias, for
example, as discussed in Section 4.2.2.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we analyzed how students used an online IDE, repl.it,
to solve code tracing (find the output of code) and reverse-tracing
(find the input that produces a given output) questions. We found
that students were able to brute-force tracing questions using the
interpreter, making tracing questions of questionable utility on an
exam that permits access to the interpreter. In contrast, we found
reverse-tracing questions to be less susceptible to exploitation on
computerized exams.

For future work, we believe it would be important to validate
these findings using a much larger and more representative sam-
ple of students, potentially by including these questions on both
paper- and computer-based exams with in the same large enroll-
ment course.

In addition, it would be interesting to explore if the results differ
were the study repeated using an interpreter like PythonTutor [22]
that permits students to single step the code forward and backwards
and provides visualizations of the state of the execution. Our obser-
vations from these interviews, although not discussed in this paper,
were that even with an interpreter like repl.it, students couldn’t
always understand why they had failed to trace code correctly.
We hypothesize that the additional insight provided by a tool like
PythonTutor could be important in helping students to understand
code to assist them in completing even complex reverse-tracing
problems.
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