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ABSTRACT

When students attempt to solve code-tracing problems, sometimes
students make mistakes as they read code that get in the way of
correctly solving the problem. In this paper, we explore the degree to
which students can correct their misunderstandings by executing
the provided code on a computer. Specifically, we performed a
qualitative between-subjects think-aloud study to compare what
kinds of errors students can resolve by just executing the code
versus which they can resolve by using a line-by-line debugger.

From observing our participants, two factors appear to be nec-
essary for them to independently resolve their misunderstandings.
First, they need to be using a tool that provides visibility into the
error itself. When using a tool that provided only the output of the
code, our participants could only resolve dataflow-oriented errors.
In contrast, when given the ability to step through the code, some
of our participants could additionally resolve control-flow errors.
Second, the error must affect the output. In all of the cases where
students arrived at the correct answer in spite of having errors in
their understanding of the code, none corrected their error indepen-
dent of the tool they were using. Presumably, they were not forced
to confront their error because of an incorrect answer. Finally, while
necessary, these conditions appear not to be sufficient, as students
still need to be able to correctly interpret the information that the
tool provides.
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1 INTRODUCTION

Tracing code is often seen as a precursor skill to abstracting or
understanding the purpose of code, and as a precursor to writing
code [22, 29, 30, 32, 33, 40, 43]. In a tracing question, students are
given code and asked to mentally execute the code to determine
one or more output values. Code tracing questions are widely used
in introductory programming courses and are well-studied in the
literature [10, 11, 31, 42, 45].

In a prior research study, we obeserved students solving trac-
ing questions both with and without access to an interpreter [21].
When they had access to the interpreter, many students would first
solve the problem without the interpreter and then check their an-
swer using the interpreter. On occasion, our participants exhibited
misunderstanding of the code as they solved the problems in their
heads. Some of these misunderstandings could be characterized as
misconceptions (e.g., [1, 3, 5, 6, 8, 9, 14, 15, 23-25, 27, 28, 34, 35, 37—
39, 41, 42]), while others might be more accurately considered
mis-readings of the code or merely failures to correctly understand
the code.

What sparked our interest was that they appeared consistently
able to correct some kinds of these misunderstandings by observ-
ing the output of an execution of the given code but not others.
To further understand cases when the output of the code was not
sufficient for students to independently address their errors, we con-
ducted an additional set of think-aloud interviews where students
were allowed to use a line-by-line debugger after first attempting
to solve the tracing questions in their head. The goal this study is
to understand how the debugger is (or is not) more helpful than
the output alone for students to independently resolve their misun-
derstandings. Specifically, our research questions are:

e RQ1: What type(s) of tracing errors can students indepen-
dently resolve with an interpreter?

e RQ2: What type(s) of tracing errors can students indepen-
dently resolve only with a debugger?

e RQ3: Why can students resolve only some types of tracing
errors independently?

As part of this paper, we present a number of errors that we
observed. We do not claim that the errors are novel misconceptions,
but we are not aware of their presentation in previous publications.

2 PRIOR WORK

Novice programmers tracing code, debugging code, and their po-
tential misconceptions are well-studied in the literature. Below we
will highlight the findings of some of these studies.

As tracing code is often regarded as a precursor to writing and
abstracting code [22, 29, 30, 32, 33, 40, 43], tracing is a crucial skill
that novice programmers must learn before they can reliably fix
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bugs. Soloway et al. found that if higher-level strategies toward
understanding a program fail, programmers resort to concrete line-
by-line tracing [13]. Past qualitative think-aloud studies of tracing
on paper found that students who correctly kept track of the values
of variables as they change per line of code in tracing problems
tend to perform better than students who do not [10, 11, 31, 42, 45].

Novice programmers’ struggles are very well-known in the lit-
erature. For example, Vainio et al. identified a variety of miscon-
ceptions students have when tracing code. For instance, students
performed ‘single value tracing, where students kept track of only
one variable in any program, and assigned the value of the most
recently assigned variable just to that one variable [42]. Other
potential misconceptions about variables include reversing the vari-
able assignment direction, interpreting assignment as equality [39],
interpreting assignments as copying instead of reference [41], inter-
preting assignments symmetrically like in mathematics [15], and
so on [1, 12, 34, 38]. Misconceptions about other programming con-
structs are also well-studied in the literature (e.g., [3, 15, 25, 27, 39]),
such as confusing return for print [3], returning outside func-
tions [25], passing unevaluated expressions as parameters, and
incorrectly interpreting Boolean expressions [39].

Novice programmers struggle more with finding bugs than fixing
them [17, 26]. In the study of Fitzgerald et al., novices reported
in post-session interviews that the easiest bugs to fix were those
found by compilers and other tools [17]. A few participants in
their study lacked the meta-cognitive awareness that they may use
code execution (e.g., test print statements) to off-load cognition to
debug a program, and instead struggled to mentally execute a large
program. Bugs that are more closely tied to the logic of programs
can be more difficult to find [17, 18]. For instance, errors related to
variable assignments are difficult to find as variables are largely tied
to the logic of programs [18]. Novice programmers often lacked
systematic strategies toward locating bugs. For instance, novices opt
to work non-systematically with print statements and repeatedly
apply random fixes. [44].

To the best of our knowledge, there is no prior work that com-
pared how students independently understood their potential trac-
ing misconceptions differently between debuggers and interpreters.
The most closely related work is Algadi et al’s study of students
independently fixing semantic errors within a given C++ program
with and without access to code execution [2]. Students struggled
the most with fixing the “loop has no body” error (e.g., misplaced
semicolon after for loop) without access to code execution, but
struggled the least with this error with access to code execution.
The researchers speculate this is due to the C++ compiler directly
giving a warning on this type of error.

3 METHODS

We conducted a series of think-aloud interviews to observe how
students (the participants) solved tracing questions with allowed
access to an interpreter as compared to a line-by-line debugger. We
followed the protocol of Ericsson et al. for conducting think-aloud
interviews where we asked participants to verbalize only their
thought process without translating it for our benefit to minimize
fatigue and third factors [16]. If participants were silent for more
than 2-3 minutes, they were reminded to think aloud.

The 31 participants were traditional aged undergraduate students
(18 males, 13 females, age range 18-23) who had completed an
introductory programming course in Python for non-Computer
Science majors during the Fall 2020 and Spring 2021 semesters.
With IRB permission, we recruited these participants through an
email sent to the class roster. Each interview was approximately
one hour and participants were compensated with a $15 gift card.

For this paper, we focused our analysis on 10 of these interviews.
The other interviews did not exhibit errors relevant to this work.
We conducted the study as a between-groups design as a follow-up
to our preliminary work on students tracing code [21]. The earlier
5 of these interviews were part of the preliminary work conducted
after the Fall 2020 semester, where participants who have taken
the course that semester were allowed access to an interpreter. The
later 5 of these interviews were conducted after the Spring 2021
semester, where participants from both the Fall 2020 and Spring
2021 semesters were allowed access to a line-by-line debugger. All
participants were given approximately equivalent sets of 11 tracing
questions; question order was varied.

The interviews were recorded over Zoom due to COVID-19, then
transcribed and analyzed independently by two researchers, who
met to discuss differences in interpretations. We inductively coded
the data, documenting 1) the students’ initial understanding and
answer exhibiting error(s) before using the interpreter or debugger,
2) the students’ understanding of an error after using the inter-
preter or debugger, 3) if using a debugger, how the student stepped
through the code back and forth line-by-line, 4) and how the student
compared their initial answer to the output of the interpreter or
state of the debugger. The two researchers independently identified
themes from the codes and reconciled differences to produce a final
list of themes.

To ascertain inter-rater reliability [36], an external (non-author)
coder re-coded the quotes from the participants’ think-alouds using
the first author’s codes. The codes were: 1) whether a participant ad-
dressed their error (addressed, addressed incorrectly, unaddressed),
2) whether the participant’s answer demonstrated the error (yes or
no), and 3) identifying the line(s) of code within the program that
are most relevant to the error. Cohen’s k was used as a measure of
the inter-rater reliability. The external coder’s codes and the first
author’s codes had high agreement (x = 0.86). Our coding scheme
and tracing questions are publicly available at the following website:
http://hdlL.handle.net/2142/112810

4 RESULTS: DEBUGGERS VS INTERPRETERS

We begin by describing three types of errors related to the partici-
pants’ understanding of the dataflow of the program. All partici-
pants were able to independently understand their dataflow-related
errors using the interpreter (i.e., from viewing the output of the
code alone), and we describe how the output was sufficient in these
cases. Next, we talk about a control-flow-related error about return
statements that participants could not understand by using the in-
terpreter, but could sometimes understand by using a line-by-line
debugger. We describe how the debugger was more helpful than
just the output. Finally, we talk about two cases where both the
debugger and the interpreter were insufficient.
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def f(li, k):
for i in range(len(li)):
if k < 1i[i]:
li.insert(i, k)
return 1i

Correct answer:
[3,3,7,7,8,13]

Incorrect answer confusing
insert with replace in list:

[3.3,7,7,8

return 1i

print(f([3,3,7,7,13], 8))

Figure 1: This function inserts 8 at the fourth index, but if
a participant confuses the insert function as replace, then
the fourth element 13 will be missing (replaced by 8).

4.1 Errors Resolved with Interpreters

Our participants that used interpreters could reliably resolve dataflow-
related errors that affect their initial answer (i.e., their answer is dif-
ferent from the correct output). We consider an error to be dataflow-
related if participants perceive an incorrect value for at least one
variable in spite of correctly tracing the sequence of lines of code.
We describe the dataflow-related errors below.

4.1.1 Confusing Insert with Replace in a List. The list.insert
method inserts a new element into the list at a specified index, and
if there is already an existing element at the specified index, then
that element (and all later elements) gets shifted by one index. Some
of our participants appeared to confuse the 1ist.insert method
with a “replace” method, resulting in the preexisting element at
the specified index being missing from their answer (see Figure
1 for an example of the function and this error). Our participants
seemed to easily understand the difference between their answers
demonstrating this error and the correct output, where they seem
to notice that the existing element was missing from their answer
but present in the output. For example, participant 1 had this error,
and after reading the output, they appeared to point out that 13 is
still present in the list, then they correctly explained their error.

“You’re going to replace it. ... So this is the list ([3, 3,
7, 7, 81, initial answer), and I'm going to check it
(runs code, output: [3, 3, 7, 7, 8, 13]).Itincludes
(13) (pause) it inserts k before that (13)”

4.1.2  Confusing Index Numbers with Value at Index Within a List.
Some of our participants appeared to confuse the value of a list
element at a specified index (e.g., 1i[2] in Figure 2) with the index
number (e.g., 2). Understanding the difference between answers
demonstrating this error and the correct output seemed easy for
our participants, where they appeared to notice the difference be-
tween the index number(s) within the list of their initial answers
compared to the value(s) at an index within the output list. Par-
ticipant 2 made this mistake and after reading the correct output,
they appeared to point out the element that was different from their
initial answer, and then they correctly explained the error.

“Why is that 12 it should be ... 2 because that’s the
second index? Oh, because, OK, so you’re inserting
the second item of the second index into the second
position, so that’s why it’s returning, so that’s why
it’s 12 12 again”

Correct answer: def f( 11) :
[0,5, 12,12, 17, 19] li.insert(2, 1i[2])
Incorrect answer confusing . return 11
index with value in list: print(f([0,5,12,17,19]))
[0, 5, 2127107 62| 3 4
Index

Figure 2: This function inserts 12 at the second index, but if
a participant confuses the index 2 for the value 12, then they
will insert 2 instead.

def f(li, a :
Correct answer: (U, a, y)

x =0
[14’ 20] fohm in li:
ifm > y:
Incorrect answer confusing x.append(m * a)
return x

input list with new list:

05, 14, 20, [2]] print(f([E} 7, 10,[3), 2, 5))

Figure 3: The extra elements 2 and 5 from the incorrect an-
swer is originally from the input list, but since 2 and 5 are
not greater than 5, it should not be appended to the list at
all. Thus, there is confusion between modifying the current
input list vs appending to the new list x.

4.1.3 Confusing Modifying Existing List with Creating a New List.
Participant 3 was solving a tracing question (Figure 3) that in-
volves a function invocation with a list as one of the input argu-
ments. In the function, a new list is initialized, values are appended
to the new list, and then that new list is returned. Participant 3,
among some other participants, appeared to incorrectly treat the
function as modifying the input list rather than appending val-
ues to a new list. What differentiates answers demonstrating this
error from the correct answer are the extra element(s) originally
from the input (e.g., 2 in this example) that are not present in the
correct output. This difference in dataflow is shown directly in
the output. Our participants who appeared to notice the element
missing from the output (but present in their incorrect answer)
universally understood this error after viewing the output alone.
Participant 3 viewed the output, appeared to point out the state-
ment that appends to a new list, and then correctly explained their
error.

... 14 20 2. (initial answer) (runs code) Oh 14 20 ... Oh ...
We’re only ... appending. Ok yeah, that makes sense.
We’re not editing the actual list, we created a new list.
So then we’re only adding in those numbers. So yeah,
just 14 20

4.2 Errors Resolved with Debuggers

Our participants that had access to interpreters seemed to struggle
to resolve control-flow-related errors. We consider an error to be
control-flow-related if participants followed an incorrect order of
execution due to a misunderstanding related to a construct that
alters the order of execution (e.g., return terminates a function).



def f(a, p, r):
if (a and p >= 25):
return "B"

Correct answer:

“y”» .
elif (r < 150 and p >= 25):
. return "y"
Incorrect answer with eliff(z ; 50):
. . hl a):
non-terminating return: return "F"
return "C"
“Y”, «T”» return "I"

print(f(False, 75, 132))

Figure 4: Since the return “I” statement is outside any con-
ditional, participants demonstrating the non-terminating
return error appeared to believe that the string “I” is al-
ways returned regardless of prior returns executing.

Control-flow errors can affect the output, but often in indirect ways.
Upon viewing just the output, participants made false assumptions
about the programming language semantics in an attempt to explain
the output. Students making false assumptions about semantics and
syntax is well documented in the literature (e.g., [24]). In some cases,
however, participants that used line-by-line debuggers seemed to
resolve this type of error as soon as they stepped through relevant
control flow.

4.2.1 Non-terminating & Multiple returns. In a tracing problem
with multiple conditionally executed return statements (Figure 4),
many participants appeared unaware of the control flow behavior of
the return statement. These participants seemed to believe that the
function would return multiple times, returning multiple values
(the strings “Y” and “I”). After viewing the interpreters’ output
(only the string “Y”), all of these participants incorrectly attributed
their mistake to a misunderstanding related to if/elif semantics
rather than the return statement.

Participant 2: “Now [understand that it doesn’t even
go to return ‘I’ so that means something about
my knowledge about elif is wrong. It must be that
it’s one of the if statements. And then that’s it. It
exits 'cause it just finds out one of the conditions that
satisfies it and that’s it”

Participant 10: “This first if statement didn’t work
and this last elif statement, didn’t work, so the only
thing that did work is this elif statement in the middle,
which is why we return Y

While all participants did not seem to understand this error
with the output alone, some participants understood the error us-
ing a debugger. Stepping through the code shows that the return
statement exits the function as soon as the return statement is
executed. Once these participants stepped through the return state-
ment, they appeared to have an “Aha!” moment and gave a correct
explanation of their error (that returns exit functions). In these
cases, the debugger explicitly displayed the control-flow behavior
of return statements, rendering debuggers more useful than the
output alone.

(Once stepped through return statement)
Participant 6: “Oh ok. ... You would return it, so the
program would end right there”

Participant 5: “Huh? Oh! ... [Integrated Develop-
ment Environment Name] literally gives you the ...
OK, because this is return so it would break off the
loop.” (question in Figure 1)

5 RESULTS: ERROR NOT RESOLVED WITH
DEBUGGERS OR INTERPRETERS

In this section, we describe two cases where participants appeared
unable to resolve their errors with neither debuggers nor inter-
preters. The first case is when the participants made false assump-
tions about line(s) of code not relevant to the error even after using
a debugger. The second case is when the error does not affect the
participants’ answer, causing them to bypass addressing the er-
ror. We observed the first case with the non-terminating return
error. We observed the second case with two errors: 1) the non-
terminating return error and 2) a new error related to compound
Boolean expressions with the and operator.

5.1 Debuggers Alone are Not Enough Without
the Right Interpretation

While debuggers can display the control flow behavior of return
statements, some participants seemed unable to understand their
non-terminating return error even after stepping through the
return statement. For example, as participants 7 & 8 stepped
through return statements, they appeared surprised to see that
the program terminated. Then, they attempt to align their under-
standing with the correct output of the program by constructing an
incorrect reason based on line(s) of code less relevant to the return
statement.

Participant 7 incorrectly associated the output based on if/elif
conditionals and indentation, rather than the control-flow behavior
of the return statement.

Participant 7:

(tracing Figure 4’s code)

(Steps line-by-line until return “Y”)

... “Yep, so we return ‘Y’ ”

(Tries to step through again, but the program is termi-
nated)

“That was it?”

“Oh, I guess it’s like you only return ‘I’ if none of
these statements (prior if & elif conditionals) are
True”

... “I guess the return would have to be like here”
(gestures mouse at return “I” being unindented).

Participant 8 incorrectly associated the output based on a line
of code calling the list.insert method, appearing to think that
the method can be called only once.

Participant 8:

(tracing Figure 5’s code)

(Initial Answer: [2, 6, 7, 7, 9, 7, 10])
(Correct Output: [2, 6, 7, 7, 9, 10])

(Steps through return 1i statement)

“Idon’t get why you wouldn’t put [an extra 7 before
10] (points at 10 in the output) ... (pause)”



def f(li, k):
for i in range(len(li)):
if k < 1i[i]:
li.insert(i, k)
return i
return 11

Correct answer:

[2, 6, 7, 7, 9, 10]
Incorrect answer with
non-terminating return:
(2,6, 7,7, 9, 7, 10]

print(f([2, 6, 7, 9, 10], 7))

Figure 5: The participant seemed to believe that the return
statement can be executed more than once, leading them to
append an extra element 7.

“oh wait ... Is it just the first one where you insert it?

(points at first element that is greater than k, the first

instance the if is True)”

(Steps back and forth repeatedly through last iteration

then return 1i again)

“Ok. I guess you’d only insert it once”
Despite the debugger directly showing the control-flow behavior of
the return statement, these participants still could not recognize
the correct semantical meaning of the return statement. Rather,
they made false assumptions about less relevant parts of the pro-
gram.

5.2 Error Not Confronted because it does Not
Affect the Output

In other cases, the participants’ errors did not cause them to get the
wrong answer. This leads them to not notice the error even when
stepping through the code with the debugger.

5.2.1 Non-terminating returns, but the return statement is ex-
ecuted only once and is irrelevant to output. Participant 9 was
solving a problem nearly identical to Figure 1. They appeared to
initially make the minor mistake of confusing the less than symbol
(<) for greater than (>), and as a result, the if condition would be
True for every element of the list but the last. By being unaware
that return statements exit the function, the participant appeared
to mentally execute the 1ist.insert statement multiple times.
They caught their mistake of swapping the less than symbol after
stepping through the line if k < 1i[i], and as a result, the if
conditional is True only at the last element of the list, hiding the
non-terminating return error from their next answer since the
return is executed only once. This leads to them solving the prob-
lem correctly. Therefore, they were not forced to confront their
error.

(Initial answer: [8, 3, 8, 3, 8, 7, 8, 7, 13]

demonstrating non-terminating return error and

swapped <)

(On debugger: stepped through if k < 1i[i])

“k is less than (pause) oh yea it (<) was backwards.”

(Corrects answer: [3, 3, 7, 7, 8, 131)

(Then quickly steps through the line [return 1i]silently)

5.2.2  Confusing Boolean and with English distributed ‘and,” but the
if conditional is False thus irrelevant to output. Some of our par-
ticipants were unable to address a error related to the Boolean and

Correct:

‘(False and 75 >= 25) %—————D%(False and True) %———D%False‘

Incorrect, confusing Boolean ‘and’ with English:
‘(False and 75 >= 25) %—————b*(False >= 25 and 75 >= 25)‘

Figure 6: Example of confusing the Boolean and operator
with the English distributive ‘and’ e.g., Saying “John and Bob
did their homework” means “John did his homework” and
“Bob did his homework,” but this does not apply to Boolean
and in programming,.

def f(a, p, r):
if (a and p >= 79):
“Y” .return "B" B )
elif (r < 100 and p >= 26):
return "y"
elif (r < 38):
if (a):
return "F"
return "C"
return "I"

Correct answer:

print(f(True, 64, 6))

Figure 7: The participant seemed to treat the first if condi-
tional as False, which is correct. However, their explanation
was because ‘true is not a number’ due to the error shown
in Figure 6. They proceeded to step through the line silently
with the debugger until the return “Y” statement, then ar-
rive at the correct answer without addressing the error.

operator after viewing the output (Figure 6). Participants seemed to
think that the compound Boolean expression evaluated to False
due to an error.

(after reading output of code in Figure 4, attempting to
interpret first if conditional)

Participant 10: “This first if statement didn’t work
I'm guessing because it’s comparing False and a num-
ber, but then it just moves down straight to this second
elif statement.”

Participant 2: “This is not True clearly because you
can’t have a ... Boolean and numerical. ... That can’t
work.”

Participant 4: “The first condition doesn’t work be-
cause is False and 75, so this would be if False and
75 is greater than or equal to 25. ... Since it’s False
here, what exactly does that mean?”

We observed a case where Participant 7’s error of the ‘and’
operator did not affect their answer, leading them to skip addressing
the error with the debugger. They were solving a second version
of the question in Figure 4, shown in Figure 7. They seemed to
misinterpret the and operator on the second line of the function
in Figure 7 ‘if (a and p >= 79):’. As they stepped through the
code, they skipped over the line ‘if (a and p >= 79):’ since it
evaluated to False and were therefore not forced to confront the
error.



(Before using the debugger)

“This first part [if (a and p >= 79):] is definitely
not right because true is like not a number”

(On debugger: quickly steps through line [if (a and
p >= 79:)1 silently)

6 DISCUSSION

Participants seemingly can independently resolve errors only if the
tool being used provides visibility into the logic of the error. Below
we will revisit our research questions.

RQ1: What type(s) of tracing errors can students independently
resolve with an interpreter? Participants who used the interpreter to
view the output of code resolved only dataflow-related errors. The
difference between the participants’ incorrect answer and the cor-
rect output explicitly revealed the differing mental representations
of the dataflow from the error to the correct execution behavior
and language semantics. In contrast, our participants were never
successful in understanding control-flow-related errors by view-
ing the output alone. Even if the participants’ incorrect answers
differed from the correct output, the output does not display the
control-flow behavior of the program.

RQ2: What type(s) of tracing errors can students independently
resolve only with a debugger? Some participants were able to address
control-flow-related errors with line-by-line debuggers which ex-
pose the control-flow behavior (order of execution) of the language
directly.

RQ3: Why can students resolve only some types of tracing errors
independently? Participants never addressed control-flow errors in
cases the error did not affect their answer. Since the error does not
interfere with solving the tracing problem correctly, participants
did not have to confront the error and did not seem to notice the
error. Participants were also unable to address errors related to un-
derstanding compound Boolean expressions, even with debuggers.
While debuggers provide visibility for the control-flow behavior
of the program, it does not show how an expression is parsed sub-
expression by sub-expression. Rather, line-by-line debuggers step
through each line of code as a whole, immediately moving on to the
next line. Thus, debuggers do not provide visibility toward errors
related to understanding how expressions are parsed.

Participants who did not resolve errors always constructed a
semantically incorrect explanation of the output of the program.
Often, the explanation was related to line(s) of code that were
not relevant to the error. This aligns with prior work on novice vs
expert programmers’ behavior fixing bugs, where experts narrowed
down to more relevant parts of the program pertaining to the bug
[4,7,19].

7 LIMITATIONS

Like any study, this work has obvious limitations. The sample
population is relatively small, as with most qualitative studies, due
to the large amounts of data to analyze per interview and time
commitments to coordinate interviews. Our participants are self-
selected, which might mean they are among the higher performers
in the course due to their self-confidence to participate in a study
that involves skills learned from the course.

Also, as the study design is between-subjects, there may be ex-
ternal factors involving the skill level of individual participants
when comparing participants using the interpreter to participants
using the debugger. We did not get an opportunity to interview
the same participants from the prior study (interpreter condition)
with the second condition (debuggers). Both populations demon-
strated errors similarly, giving us some confidence that they could
be compared.

8 CONCLUSIONS & FUTURE WORK

In this paper, we explored how students independently resolved
their errors when given access to an interpreter (i.e., view the output
of code) compared to a line-by-line debugger on ‘find the output of
code’ tracing questions. Our participants were only able to resolve
errors independently if the error affected their initial answer and if
the tool they used provides visibility into the logic of the error. We
found that for dataflow-related errors, students were consistently
able to resolve their errors with both interpreters and debuggers.
For control-flow-related errors that affect students’ answers, only
debuggers were helpful as the step-through nature of debuggers
directly shows the control-flow behavior of programs. For errors
that do not affect students’ answers, students bypassed addressing
their errors.

Our results suggest that showing students the correct answer
to a tracing question is not enough for students to understand
their own tracing errors. Thus, it is potentially detrimental to give
students answer keys to tracing questions even after solving the
problem. Students may think they understood the output of tracing
questions, but their thought-process might be for semantically
incorrect reasons. Rather, the answer key needs to at least define the
relevant programming language semantics, or students should be
asked to explain their understanding of the correct output as part of
the homework assignment. Offering students a debugging interface
in homework assignments can be especially beneficial for students
to learn the control-flow behavior of programs. However, debuggers
alone are not necessarily sufficient toward understanding errors, as
debuggers do not show how expressions are parsed sub-expression
by sub-expression, and students must correctly interpret what they
see. Tools like PythonTutor [20] may benefit from having a feature
to step through lines of code sub-expression by sub-expression.

It may be interesting to explore and classify how high- or low-
level are students’ explanations of programs as they step through
the program with debuggers compared to interpreters, and possibly
compared to neither. Although not discussed in this paper due to
space limitations, we found certain cases where students using de-
buggers gave more concise, higher-level explanations of programs
on the dataflow-related errors.
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