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ABSTRACT

Explain in Plain English (EiPE) questions evaluate whether stu-
dents can understand and explain the high-level purpose of code.
We conducted a qualitative think-aloud study of introductory pro-
gramming students solving EiPE questions. In this paper, we focus
on how students use tracing (mental execution) to understand code
in order to explain it.

We found that, in some cases, tracing can be an effective strat-
egy for novices to understand and explain code. Furthermore, we
observed three problems that prevented tracing from being help-
ful, which are 1) not employing tracing when it could be helpful
(some struggling students explained correctly after the interviewer
suggested tracing the code), 2) tracing incorrectly due to misun-
derstandings of the programming language, and 3) tracing with a
set of inputs that did not sufficiently expose the code’s behavior
(upon interviewer suggesting inputs, students explained correctly).
These results suggest that we should teach students to use tracing
as a method for understanding code and teach them how to select
appropriate inputs to trace.
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1 INTRODUCTION

Students who are adept at providing high-level explanations
of code tend to perform well at writing programs, implying that
explaining code (which necessitates understanding) may be a pre-
cursor to writing code [12, 16]. On the contrary, explaining code at
a low-level by restating the code line-by-line does not demonstrate
an understanding of the purpose of the code [25]. “Explain in Plain
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Write a short, high-level English language description of the
code below. Do not give a line-by-line description.

Assume that the variable x is a string. You can assume that
the code compiles and runs without error.

def f3(x):
e = "aeiou"
for ¢ in e:
if ¢ not in x:
return False
return True

Figure 1: An example EiPE question with the high-level de-
scription of “Returns whether a given string contains all
vowel letters.”

English” (EiPE) questions (Figure 1), which require students to give
a high-level explanation of code, are a common way to evaluate
the skills of understanding and explaining code. A recent theory
toward learning programming suggests that EiPE questions should
be used towards learning common programming patterns [28] to
help students read code written by others. In this paper, we inves-
tigate the process of how students understand code to explain its
high-level purpose.

While classifying the quality of student explanations has been
extensively addressed in the literature [25], the thought process of
students as they explain code has been seldom addressed. To the best
of our knowledge, only Teague et al. has, as part of a broader study
on characterising advancement levels of programming students,
conducted think-alouds analyzing the thought-process of students
explaining code [21-23]. Teague et al’s main findings regarding
EiPE questions (discussed in more detail in Section 2) were that
advanced students can comprehend and make sense of code as they
were reading it and, as a result, can explain code immediately after
reading it. Less advanced students, on the other hand, needed to
mentally execute (or trace) the code line-by-line multiple times first,
to learn the relationship between inputs and outputs.

We also observed students using tracing to understand code,
and this paper focuses on that practice. While the process of stu-
dents solving tracing questions (e.g., find the output) has been
well-studied and EiPE problems are well-regarded in the literature,
how students use tracing to understand code (and, hence, solve
EipE problems) has not been well studied. For example, Teague et
al’s studies included only two EiPE questions and those lacked im-
portant programming concepts, such as loops [21, 22]. In particular,
our research questions are:
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e How is tracing helpful for students to understand code and
provide high-level explanations?

e What problems arise when students use tracing to under-
stand code?

We find that tracing did help many of our research participants to
correctly explain code that they could not explain without tracing,
but three types of problems prevented tracing from aiding in some
cases:

(1) Some participants were not aware that they could use tracing
as a strategy to explain code. For these participants, the
interviewer had to suggest to them to trace.

(2) Some participants did not trace the code correctly due to
a misunderstanding related to the programming language,
leading them to give an incorrect explanation based on their
incorrect trace.

(3) Some participants did not choose a good set of inputs to
sufficiently understand the general purpose of the given
code. For these participants, the interviewer had to suggest
useful inputs.

We begin, in Section 2, by describing prior work on the classifica-
tion of the quality of student explanations of code and the different
skills and advancement levels of programming. Then, in Section 3,
we describe the research method of our study. Next, in Section 4,
we describe the results of our study, starting with successful cases
of students using tracing then the unsuccessful cases organized by
the list above. Finally, we discuss the broader implications of this
study, the limitations, conclusions, and future work.

2 RELATED WORK

Earlier work classified the quality of student-written explanations
of code through SOLO’s Taxonomy [2, 25]. Ideal explanations of
code should be high-level and concise, which are classified as “re-
lational” explanations. This is contrary to low-level, line-by-line
explanations, which are classified as “multistructural” explanations.
More recent work proposed an extended rubric for evaluating the
quality of student explanations based on not only the level of ab-
straction but also factors such as correctness, ambiguity, and com-
pleteness 3, 24]. This helps differentiate from explanations that
may be high-level but incorrect, confusing, or incomplete.

Teague et al. classified programming students’ advancement
levels based on the Neo-Piagetian framework as students solved
EiPE questions, tracing questions [21-23], and fill-in-the-blank pro-
gramming questions [23]. They found that more advanced novices
can comprehend code as they read it by abstractly tracing with
ranges/constraints rather than concrete values, demonstrating an
understanding of the relationship between variables. When pro-
grammers are unable to use advanced strategies to understand
code, they resort to tracing with concrete values [9, 22]. Teague
et al. found that less advanced students rely on tracing to explain
code, where they trace the code multiple times with multiple differ-
ent inputs values, then infer the purpose of the code based on the
input-output pairs obtained [21]. Detienne et al. found that even
experts may resort to tracing upon reading unfamiliar code [9].
Programmers may also use tracing to help them find and fix bugs
within programs as well [4, 17].
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How students trace code has been well-studied in the context
of tracing (e.g., find the output) questions, which do not require
students to select inputs. For example, there are studies analyzing
students’ drawings/notes as they trace [6, 14] and tools made to
scaffold tracing [5, 19]. On the other hand, how tracing can be
used to understand and explain code at a high-level is not well-
investigated.

Unlike traditional tracing problems, tracing for understanding
code requires students to select inputs. To our best knowledge,
how students choose inputs to understand others’ code is not well
investigated. The most similar work is that of students designing
test cases for their code, where students know the goal of their
program. Students can have an oversimplified view of the input-
output relation of programs, often writing test cases that only cover
expected, typical-case scenarios and do not account for hidden,
unexpected situations that are likely to reveal bugs [10, 13]. Input-
output exercises are also known to be beneficial for code-writing
questions. Since students often misunderstand code-writing ques-
tion prompts and work toward solving the wrong problem [15],
Prather et al. [20] and Denny et al. [8] asked students to find the
output for corresponding inputs pertaining to the question prompt
before writing code. These input-output exercises helped students
develop meta-cognitive awareness to correct their understanding
of the code-writing prompt.

3 METHODS

We conducted a series of think-aloud interviews to observe how
students (the participants) solved EiPE questions and how they used
tracing toward solving the problems. We followed the protocol of
Ericsson et al. for conducting think-aloud interviews, where we
asked participants to verbalize only their thought process without
translating it for our benefit to minimize fatigue and third factors
[11].

The 15 participants were traditional-aged undergraduate stu-
dents (9 males, 6 females, age range 18-23) who had completed an
introductory programming course in Python for non-technical ma-
jors during the Fall 2021 semester. The course instructor has taught
how to solve EiPE questions (e.g., showing examples of ambiguous,
low-level answers to avoid). The EiPE questions administered dur-
ing the course differ from the questions used for this study. With
IRB permission, we recruited these participants through an email
sent to the class roster. Each interview was approximately one hour,
and participants were compensated with a $15 gift card.

For this paper, we focused our analysis on 11 of these interviews.
The other interviews did not exhibit behaviors relevant to this
work (i.e., no usage of tracing). We present excerpts from 7 of the
11 interviews due to space limitations. This study was conducted in
two phases. For the first phase, we asked participants to think-aloud
as they solved EiPE questions. If they were silent for more than 2-3
minutes, we reminded them to think-aloud. The second phase was
conducted in a similar fashion, but if participants were stuck on
solving problems for more than 2-3 minutes (appearing to make no
progress), we additionally asked them to trace the code to determine
if this helped them to explain the code. If participants were still
unable to explain the code even after tracing, we suggested specific
inputs to use when tracing the code. We conducted the second phase
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after we noticed the prevalent behavior of participants resorting
to tracing. All participants were given approximately equivalent
sets of 12 Python-language EiPE questions; question order was
varied. For each question, the participants were provided with the
following instructions:

Write a short, high-level English language description
of the code in the highlighted region. Do not give a
line-by-line description.

Assume that the variable x is a <datatype, e.g., string,
int, etc>. You can assume that the code compiles and
runs without error.

The interviews were recorded over Zoom due to COVID-19,
then transcribed and analyzed independently by two researchers,
who met to discuss differences in interpretations. We inductively
coded the data, documenting: 1) the inputs participants chose for
tracing the function (e.g., did they choose inputs that helped them
understand the function?), 2) whether they traced correctly (e.g., did
they follow correct programming language rules like correct order
of execution?), 3) the quality of the participant’s explanation of the
function (e.g., is it high level and relational, per SOLO’s Taxonomy
[2]?). The two researchers independently identified themes from the
codes and reconciled differences to produce a final list of themes.

4 RESULTS

We found that tracing can help some participants solve EiPE ques-
tions. Furthermore, we identified three ways participants can fail
to use tracing to help themselves solve EiPE questions.

(1) They do not consider tracing the code when it could help
them. We had participants that were struggling to correctly
explain the function, but when prompted by the interviewer
to trace the code, they then correctly explained the code.

(2) They failed to correctly trace the code, not following appro-
priate programming language rules, such as the order-of-
execution, syntax rules, built-in function definition rules,
and so on.

(3) They failed to choose a set of inputs that exposed enough of
the function’s behavior to understand its purpose (e.g., dif-
ferent paths of if-statements, vary number of loop iterations,
empty vs non-empty data structures, non-null).

4.1 Tracing can help Participants Solve EiPE
Questions

The concrete nature of tracing code can help learners understand
the execution behavior of the code. For example, Participant 1 gave
an incorrect explanation of the function in Figure 1. The interviewer
notified the participant that their explanation was incorrect. Then,
the participant chose to trace the code to check their explanation.
As they partially traced the loop, they recognized its overarching
pattern and corrected their explanation of the code.

Participant 1: Writes incorrect explanation “This func-
tion returns False if string x does not have any vowels.
If string x does have vowels it returns True” for the ques-
tion in Figure 1

(Interviewer notifies participant that their answer is in-
correct)
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def f1():

X =0

c = -1

z = -1

while z != 0@:
z = int(input("Give me a number: "))
X += z
c +=1

return x / ¢

Figure 2: A correct, high-level description of this function is
“Returns the average of all given input numbers, stopping at
0'))

Participant 1: Tries input string “bceray”
Participant 1: for each of these values in e, for “aeiou”
in e, if ¢ not in x, return False. If (pause)
Participant 1: Ok so for c in e, ... So it starts at ‘a’, so
for ‘a’in e, ... if ‘a’ is not in x, it returns False. Then it
goes back up.

Participant 1: So it checks to see if each the (pause)
ifa e io but it goes in order, ... (pause)

Participant 1: When does it return true? Ok it re-
turns true if we (pause) ...

Participant 1: If a e i 0 or u is not in x, it returns
False? ...

Participant 1: Oh, if all 5 vowels are in x it returns
true, else it returns false (correct explanation).

4.2 Some Participants Who Struggled to Explain
Functions Did Not Consider Tracing

Some participants that struggled to explain functions did not con-
sider tracing. Instead, they appeared stuck (e.g., were silent for more
than two minutes) or repeatedly explained the function incorrectly
without attempting to trace. In those cases, the interviewer sug-
gested tracing, which led some participants to correctly explain the
function. For example, participant 11 appeared stuck on explaining
the function in Figure 2. The interviewer suggested to trace the
code. The participant then chose inputs and traced the code, but
appeared confused about variable c being initialized to -1. As they
continued to trace more, they then independently resolved their
own confusion and correctly explained the function.

Participant 11: (Appears confused, not giving any ex-
planation)

Interviewer: Try out some numbers and see what
happens. Maybe it might help you.

Participant 11: Sure. I can try 3. ... Because z is not
equal to 0, you’re gonna do x plus equals 3 which
means x is equal to 3. And then wait. Yea. My confu-
sion here is why is z set to -1?

(Interviewer suggests to the participant to continue trac-
ing)

Participant 11: So x would be equal to 3, and then ¢
would have 1 added to it, making it 0. It would return
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Assume that the variable x is a 1ist of ints.

def Rf17(x):
for w in x:
if w%2==20:
return w
return -1

Figure 3: A correct, high-level description of this function is
“Returns the first even number from a given list.”

3 divided by 0, gives an error.

Participant 11: Maybe if I try another number. If its
5 then x is equal to 8. z is equal to 1. Return ...
Participant 11: If we try another number, let’s say 2
... So c is the count minus 1. And then x is the sum of
all the numbers you input. So the sum (pause) oh, it
is the average.

4.3 Some Participants Traced Incorrectly

Some participants did not trace the code correctly because they
did not follow the appropriate programming language rules (e.g.,
incorrect order-of-execution). Participants who traced incorrectly
gave incorrect explanations of the function. In these two examples,
Participant 3 gave incorrect explanations of the functions. The in-
terviewer then prompted them to trace the function with an input
in an attempt to assist the participant. The participant responded
with incorrect outputs and did not resolve their incorrect explana-
tions. This participant appeared to mistakenly believe that return
statements do not terminate a function’s execution (e.g., treating
return like print [1]), which interfered with their ability to trace
the code.

Participant 3: Writes incorrect explanation “Returns
False if there are no vowels in string x, or returns True”
for question in Figure 1

Interviewer: Do you want to try a 3 letter string and
walk through it?

Participant 3: Tries input string “aep”

Participant 3: It would return True, True, and False.

Participant 3: Writes incorrect explanation “returns
the even integers of the list x” for question in Figure 3
Interviewer: If the input to the function was the list
[2,3,4], what would the output be?

Participant 3: 2 and 4, (incorrect, output is 2) because
they are divided by 2 and remainder is 0.

4.4 Some Participants Did Not Choose a Good
Set of Inputs

Some participants traced the function with a limited set of inputs

that did not expose the general behavior of the function and, as

a result, could not correctly explain the function. These types of

incorrect explanations often gave a correct lower-level fact about

Assume that the variable x is an int.

def f19(x):
0=20
while x > 0:
if (x % 10) % 2 == 0:
o +=1
x //= 1@
return o

Figure 4: A correct, high-level description of this function is
“Returns the number of even digits in a given number””

the function but does not represent the high-level purpose of the
function.

For example, Participant 6 was unsure how to explain the func-
tion in Figure 4 initially, so they chose to trace to try to understand
the behavior of the function. They correctly traced with many dif-
ferent inputs (e.g., 1000, 1500, 1700, etc), but none of the inputs had
even digits besides 0. As a result, they mistakenly believed that the
function counts the number of zeroes in a given integer.

Participant 6: (Traces input 133 for question in Figure
4)

Participant 6: I'm thinking it checks the numbers of
tens, hundreds, thousands.

Participant 6: (Traces input 1000, 1500)
Participant 6: I'm not sure what this if statement
checks but I know that after it does this checking, it
divides this number by 10, gives you the remainder.
This if statement is the key (pause).

Participant 6: (Traces input 15, 0, 1700) I'm checking
different numbers for x. ... I was thinking it gives a
count of the number of zeroes. ...

Participant 6: Ok the theory I have is that it counts
the number of zeroes. ...

Participant 6: (Writes explanation “returns the num-
ber of zeroes that appear in a given number,” incorrect
as it is functionally incomplete)

As another unsuccessful example, participant 10 gave an initial,
incorrect explanation. After the interviewer notified the participant
that their explanation was incorrect, they chose to trace the code
with only the empty list as the input which did not demonstrate the
execution of the ‘for each item in list’ loop. Although they traced
correctly, they were unable to correct their explanation.

Participant 10: (Wrote incorrect explanation “returns
even integers from a list” for question in Figure 3)
(Interviewer notifies participant that explanation is in-
correct)

Participant 10: (chose to trace input []) If it’s an
empty list the output is -1 (Correct trace).
(Participant revises explanation to “returns even integers
and if it’s empty it returns -1,” still incorrect)

For complex functions that have at least one conditional and loop,
successful participants selected specific sets of inputs to expose
the general behavior of the function. These participants started
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Assume that the variable x is a string.

def f7(x):

o=""

for i in range(len(x)-1, -1, -1):
o += x[i]

return o

Figure 5: A correct, high-level description of this function is
“Reverses a given string.”

tracing initially with arbitrary values of the appropriate data type.
Afterwards, these participants narrowed down to values holding
specified characteristics (e.g., fulfilling an if condition a specified
number of times within a for loop) to better understand the func-
tion.

For example, participant 12 immediately chose to trace with
inputs for the function in Figure 4. They appeared to choose round
numbers of 2-3 digits that had even and odd digits (e.g., 400, 120,
20, etc). They seemed confused about the purpose of the function
but continued to repeat the same set of inputs. Finally, they tried
a larger number, 2398, with 4 digits that had 2 even digits, 2 odd
digits, and no 0 digits. Then, they gave a correct explanation of the
function only after tracing with this larger input.

For cases where participants were unable to choose a good set
of inputs, the interviewer would provide the participant with a set
of inputs as assistance. This always led participants to successfully
explain functions, assuming the participant traced correctly.

For example, participant 4 began by reading the code in Figure
1 and provided an incorrect explanation of the function. After the
interviewer notified them that their explanation was incorrect,
they traced the code with two of their own self-selected inputs.
After each of their own traces, they revised their explanation to
be a correct lower-level fact about the function, but was still not
representative of the complete, high-level purpose. For instance,
“the function will return True if the string input was ‘aeiou,” but
that is not the high-level purpose of the function. Afterwards, the
interviewer provided the participant with two inputs to help them
to better understand the function. The first provided input led the
participant to revise their explanation to be closer to the correct
answer, and the second input led the participant to revise their
explanation to be the correct high-level purpose.

Participant 4: (Wrote incorrect explanation “Returns
True if ‘a’ is present in string x” for question in Figure
1)

(Interviewer notifies participant that answer is incor-
rect)

(Participant chooses to trace with input string ‘lollipop’)
Participant 4: If ‘a’ is not in lollipop, it would return
False, but if ‘a’ is, then it’d go again, then it'd go
again (pointing mouse cursor throughout for loop).

Participant 4: Oh wait it wouldn’t go again, oh my
gosh (pause).

(Writes incorrect explanation that is closer to the correct
answer, containing a correct lower-level fact about the
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function “Returns True if string x equals ‘aeiou™)
Participant 4: For c in e, if ¢ is not in x, its (a) not, it
would return False, but if this was, if this was
(Participant chooses to trace with input string ‘aeiou’)
Participant 4: ... if cis not in x, it (a) is, for cine, if ¢
not in x, it (e) is ..., and then after it does ‘u’, it would
go out and return True.

(Interviewer notifies participant that explanation is in-
correct. Interviewer suggests to trace with the input
string ‘helloaeiou’)

Participant 4: for cine, if cisnotin x ..., so then it’d
have to be present. ...

(Participant revises explanation to “Return False if ‘aeiou’
is not present in string x, else True”, which is incorrect
since order of characters does not matter, but even closer
to the correct answer)

(Interviewer notifies explanation is incorrect, and sug-
gests to trace with input string ‘hellaoeiou’)
Participant 4: It goes through and it (points mouse
at ’aeiou’) is still is present. ... (Participant revises to
correct explanation “Returns False if the characters in
‘aeiou’ is not present in x, else True”)

For simple functions (e.g., functions that lack if statements), our
participants always understood the function by tracing with only
one input. This may suggest that simple functions are easy to ex-
plain with tracing because participants can easily guess good inputs
to understand those functions. Almost any input value of the cor-
rect data type would be sufficient for participants to understand the
function. For example, for the function in Figure 5, any one string
that is not a palindrome would be sufficient to test the behavior
of the for loop (e.g., most names/words meet this criteria). All of
our participants chose a string that met this criteria on their first
attempt and consequently understood the function through tracing,
even including participants who struggled to choose good inputs
on more complex problems.

5 DISCUSSION

To answer RQ1, How is tracing helpful for students to understand
code and provide high-level explanations?, our successful participants
made use of tracing in one of two ways:

(1) Participants performed a partial trace of the code and, through
this process, they recognized the overarching pattern. They
then provided a high-level explanation (e.g., participant 1 in
Section 4.1).

(2) Participants performed several complete traces of the code.
After some complete traces, these participants iteratively
revised their explanation based on the observed input-output
relationships. This process repeats until the participant has
chosen a sufficient set of inputs to expose the high-level
purpose of the function (e.g., participant 12 in Section 4.4).

One potential reason some participants only needed a partial
trace to understand code in some problems may be due to the dif-
fering difficulties of problems. Some participants used partial traces
only on problems that utilized loops, appearing to recognize the
pattern of the remaining iterations of the loop mid-trace. Cunning-
ham et al. retrospectively interviewed students about their notes
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on tracing questions and also found that some students performed
a partial trace [7]. Our partial trace finding differs from Teague et
al’s studies [21-23] in that Teague et al’s successful participants
who traced always performed complete traces rather than a par-
tial trace, not appearing to make sense of the overarching pattern
of the code in the middle of their trace. Rather, they inferred the
purpose of code using multiple input-output pairs obtained after
completing multiple traces. Teague et al’s EiPE questions lacked
loops, potentially implying that this partial trace strategy may be
applicable only to loops.

Like Teague et al. [21-23], we also found that some participants
needed multiple complete traces to explain code, but with our more
complex problems, we add further insight to Teague et al’s finding,
in that many of our participants performed an iterative process
where they revised their answer in between multiple traces. Some
of our participants began with providing a correct fact that does not
capture the complete, high-level purpose, and as they traced with
more inputs, they revised their answer to be closer to the complete,
high-level purpose. Successful participants correctly explained the
code after multiple iterations.

To answer RQ2, What problems arise when students use tracing
to understand code?, we found three:

(1) Some participants were not aware that they can use tracing
as a strategy to explain code.

(2) Some participants did not trace the code correctly due to a
misunderstanding related to the programming language.

(3) Some participants did not choose a good set of inputs to
sufficiently understand the general purpose of the given
code.

Since many participants needed the suggestion to trace to suc-
cessfully solve EiPE questions, our results suggest that we should
teach introductory programming students to use tracing as one of
the strategies to understand code. Encouraging the use of tracing
for understanding is reasonable developmentally because the ability
to trace often precedes the ability to read (understand and explain)
code [14]. Contrary to some of our participants being unaware of
using tracing, Teague et al. [21-23] found that all participants in
their study who initially struggled to explain independently chose
to trace, as tracing questions always preceded EiPE questions in
their studies, likely priming students to trace first.

Some participants traced incorrectly, demonstrating misunder-
standings related to the programming language and, as a result,
gave an incorrect explanation consistent with their incorrect trace.
These incorrect explanations are still high-level (e.g., “returns the
even integers of the list x” in Section 4.3), similar to the finding
of Murphy et al. [18] of students who abstract code incorrectly.
We hypothesize that these participants abstract incorrectly due to
misunderstandings of program execution behavior. Future work is
needed to confirm whether it is a misconception solely about the
programming language or additionally on the process of explaining
code (e.g., can there be students who trace correctly with sufficient
inputs but give incorrect, high-level explanations?).

We found that, for participants who needed to trace multiple
times, some did not choose a sufficiently useful set of inputs to un-
derstand the code. These participants gave incomplete, high-level
explanations (e.g., participant 6 in Section 4.4). After we provided
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inputs to guide these participants, they explained the code correctly.
Since they needed this guidance, we should teach students how
to choose helpful inputs to understand code. Wrenn et al. [26, 27]
found that students who write test cases for programming problems
assume non-existent functionality and non-existent constraints on
possible inputs. We observe a similar example with participant
6 where they seem to conclude that the function counts decimal
places immediately after the first input, unlike successful partici-
pants who expressed confusion after their first (often few) inputs
rather than making early conclusions. Participant 4 also quickly
assumed the code’s functionality immediately after their first input.
Participant 10 chose only the empty list as an (overly constraining)
input. As student test cases also tend to miss rare implementation
bugs [13, 27], a potential recommendation is to teach students to
avoid making early assumptions about code until they have tried a
sufficiently diverse set of inputs.

6 LIMITATIONS

Our data may not be representative of students in general. As
typical of most qualitative studies, the sample size is relatively
small due to the large amounts of data to analyze per interview
and time commitments to coordinate and perform interviews. Also,
our participants are self-selected, which might mean that they have
higher than average self-confidence as they chose to participate in
the study and may be among the higher performers of the course.

7 CONCLUSIONS & FUTURE WORK

In this paper, we have presented a study on how introductory
programming students use tracing to understand and explain the
high-level purpose of functions. We found that while tracing can
be helpful toward understanding functions, there were three types
of issues that prevented students from using tracing to understand
code. The first issue was students not considering using tracing
when it could help them understand the function. For these students,
the interviewer suggested to them to trace, and they were then able
to understand the code (assuming they traced correctly). The second
issue was students not tracing the code correctly, demonstrating
misunderstandings related to the programming language. The third
issue was students not selecting a good set of inputs that would
expose the general behavior of the function (e.g., not selecting even
digits for a function that counts the number of even digits).

These findings informs us of how we can help students under-
stand and explain functions, by 1) suggesting to students to trace if
they struggle to understand the function and 2) teaching students
how to select useful input arguments to trace to understand the
function. More research is required on how to teach students to
select appropriate inputs.
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