
How should we ‘Explain in plain English’? Voices from the
Community

Max Fowler
mfowler5@illinois.edu
University of Illinois
Urbana, Illinois, USA

Binglin Chen
chen386@illinois.edu
University of Illinois
Urbana, Illinois, USA

Craig Zilles
zilles@illinois.edu
University of Illinois
Urbana, Illinois, USA

ABSTRACT
“Explain in plain English” (EipE) questions are seen as an impor-
tant developmental activity and assessment tool in the research
community studying how people learn to program, but they aren’t
widely used in practice because of difficulty of grading and work-
load issues. In this paper, we interviewed eleven members of the
introductory programming education research community about
their thoughts on EipE questions as a whole and how individual
borderline student answers should be graded. Through inductive
coding of the interview transcripts, we identify: (1) themes relating
to how EipE questions should be used in class, (2) the importance
of training students to complete EipE questions, (3) standards for
the selection and presentation of code in EipE questions, (4) the
theoretical and practical considerations relating to grading EipE
questions, and (5) English as a second language (ESL) concerns. In
addition, we attempt to extrapolate from our observations what the
underlying grading process is that faculty are using to grade EipE
questions.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
interviews, explain in plain English, EipE, qualitative
ACM Reference Format:
Max Fowler, Binglin Chen, and Craig Zilles. 2021. How should we ‘Explain
in plain English’? Voices from the Community. In Proceedings of the 17th
ACM Conference on International Computing Education Research (ICER 2021),
August 16–19, 2021, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3446871.3469738

1 INTRODUCTION
“Explain in plain English” (EipE) questions, as shown in Figure 1,
provide a student with a code snippet to read and ask the student to
describe in natural language what it is that the code does. Students
are generally directed to not provide a line-by-line description, but
rather a holistic description that demonstrates that the student
understands the interplay between the lines of code.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER 2021, August 16–19, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8326-4/21/08. . . $15.00
https://doi.org/10.1145/3446871.3469738

Figure 1: Example ‘Explain in plain English’ question from
Murphy et al.[21].

EipE questions were popularized in the mid-2000’s as a means
of assessing students’ ability to read code, a developmental skill re-
lated to learning to program [14]. Researchers theorized that there
is a loose hierarchy of programming skills with code writing at the
top of the hierarchy and many programming students struggling
with tasks lower in the hierarchy [15]. These skills span from un-
derstanding syntax (as the easiest), to code tracing (executing code
in your head for one particular input), to code reading/explaining
(abstracting the behavior of code across all possible inputs), to code
writing (as the most complex) [15]. We discuss this prior work in
Section 2.

In spite of likely playing an important role in learning to program,
code reading/explaining activities like EipE questions aren’t heavily
used in introductory programming classes because of the effort
and difficulty of grading them (see Section 4.2). EipE questions
are somewhat unique among CS 1 assessment items, because they
involve natural language responses. Answers to syntax, tracing,
and code writing questions can be cleanly delineated into correct
and incorrect answers, making them easier to grade and frequently
allowing them to be graded automatically in large CS 1 courses.
The lack of an absolute line for objective correctness makes EipE
grading far less straightforward.

Nevertheless, natural language processing (NLP) has been pro-
posed as a means to automate the grading of EipE questions [2, 10]
for large classes. However, such a proposal immediately arrives at
the question, “But, which answers should the algorithmmark as cor-
rect?” While we endeavored in prior work to establish a rubric for
EipE [5], our experience using EipE produced myriad questions and
difficult scoring decisions. In this work, we sought out to explore if

https://doi.org/10.1145/3446871.3469738
https://doi.org/10.1145/3446871.3469738

there was a community consensus on how EipE questions should
be graded. Specifically, we considered two research questions:

(1) How should EipE questions be scored?
(2) What are best practices around EipE questions (e.g., how

they should be used, presented, etc.)?

To explore these research questions, we conducted structured
interviews with eleven members of the introductory programming
education research community. The questions on these interviews
and a description of our inductive coding of these interviews is
presented in Section 3. To our knowledge, this is the first attempt
to synthesize community knowledge around EipE question.

We find a lot of agreement in the goals for, construction of, pre-
sentation of, and student preparation for EipE questions (Sections 4
and 5). On the surface, there was less consensus about exactly how
scores should be assigned to answers (Section 6), but we believe
there are broad similarities about how our participants assigned
grades (Section 7). We are cautiously optimistic that a community
standard for grading EipE questions might be achievable.

2 RELATEDWORK
EipE questions were popularized in the mid-2000’s, appearing in a
study by Whalley et al. in which students were asked to, “In plain
English, explain what the following segment of Java code does” [29].
These questions are a way of exploring students’ ability to grasp
the abstract meaning of code segments, rather than just be limited
to explaining the behavior of individual lines of code. Answers to
Whalley’s EipE question were classified using the Structure of Ob-
served Learning Outcome (SOLO taxonomy) [4]. SOLO is frequently
used in existing EipE literature as a metric for categorizing EipE
answers [9, 21]. While the full taxonomy features five categories,
the two most relevant categories to code EipE are multi-structural
– line-by-line descriptions of a code snippet – and relational – ab-
stractions of what a code’s purpose is. Since theWhalley et al. study,
several authors have investigated the relationship between code
reading and code writing [16–18, 21, 22].

To provide an example of what multi-structural and relational
answers for EipE prompts are, we use Figure 1 from Murphy et
al. and their study linking EipE proficiency to code writing on
a computer. This Java code snippet has three int variables and a
decision tree. A relational explanation for this code snippet would be
something along the lines of given three ints, print the largest of the
three. This answer is relational because it correctly summarizes the
overall purpose of the code snippet. By contrast, we can construct
a correct but multi-structural answer as follows: This code has int
a, b, and c. If a is less than b and b is less than c, the code prints c. If
a is less than b and b is not less than c, the code prints b. If a is less
than b and less than c, the code prints c. If none of these are true, the
code prints a. This is a correct written tracing of the decision tree’s
structure, but the overall purpose of the code is absent.

Whalley et al. argue that comprehension of a piece of code,
and understanding of the knowledge used within it, are neces-
sary prerequisites for novices to write that same code. Specifically,
a relational level of understanding and not just multi-structural
understanding is necessary for programmers [29]. Longitudinal

studies have shown that students who cannot explain code rela-
tionally early in the semester tend to struggle with writing code
later on [8].

Further work in this area provides evidence for a hierarchy of
programming skills, with mastery at lower levels of the hierarchy
shown to be predictive of code writing ability [8, 17, 18, 27]. In
particular, Lopez et al. find that students’ performance on tracing
and code reading questions account for 46% of the variance in their
performance on code writing questions [18]. Although these studies
do not state the hierarchy has a strict structure, Lister et al. state
that, “We found that students who cannot trace code usually cannot
explain code, and also that students who tend to perform reasonably
well at code writing tasks have also usually acquired the ability to
both trace code and explain code.” [17]

Multiple authors propose that code tracing and reading should
be a greater focus in novice instruction [1, 6, 7, 17, 22, 30]. Lister
et al. state, “It is our view that novices only begin to improve their
code writing ability via extensive practice in code writing when
their tracing and explaining skills are strong enough to support a
systematic approach to code writing . . . ” [17]

Code reading activities may be among the best activities for
instructing novices in the use of common programming patterns.
One key way experts differ from novices is their ability to auto-
matically ‘chunk’ multiple syntax elements and process them as
one unit [6, 11, 20, 31], reducing their cognitive load [25]. These
chunks (or schema in the cognitive load literature) are iteratively
constructed through repeated use of and exposure to common
identifiable features [19] and are learned more efficiently in lower
cognitive load activities (i.e., code reading rather than writing) [26].
When students had learned an applicable pattern, Rist found that
students could and did reason forward from plan to code [24].

3 METHOD
We contacted 19 members of the community by email to partici-
pate in interviews. Interview subjects were drawn from authors of
papers involving EipE questions and other prominent members of
the research community studying introductory programming that
were familiar with or who had used EipE questions in introduc-
tory programming courses. Eleven respondents (7 women, 4 men)
agreed to participate in interviews (58% response rate), two others
indicated that they are no longer engaged in work at all related
to CS 1, and six did not respond. Our participants were from five
countries on three different continents; they predominantly taught
large enrollment courses with the help of teaching assistants, but
at least one of them did all of the grading themselves.

We conducted 30 to 60 minute interviews with the participants
individually using online video conferencing software. While there
was some variation between the interviews due to time constraints,
we asked each participant a series of general questions and to
comment on a collection of student answers to EipE questions. The
general questions are shown in (Figure 2), where the first six were
asked at the beginning of the interview and the last two at the end.

Interview subjects were typically asked to consider 16 responses
to 5 EipE questions shown in Figure 3. The questions were based on
the Python language, and, because not all interviewees were profi-
cient with the Python language, the interviewer ensured that each

(1) Do you use EipE questions in your teaching? Why/why not?
(a) If used: What was your grading rubric?

(2) What are/would be your goals be in asking EipE questions?
(3) Do you think EipE questions are good for homework, exams, or both? Explain.
(4) What makes a piece of code appropriate for asking on an EipE question?
(5) What aspects are important about how EipE questions are presented to students?
(6) How should functions and variables be named?

(Discussion of specific student answers happens here.)
(7) Is it more important to grade an EipE question based on a student’s ability to communicate what the code does or on your perception

of the student’s understanding of what the code does? Explain.
(8) Do you think there is an EipE grading rubric needs to be specific to the question being asked or is there are universal rubric that

works for all questions? Explain.

Figure 2: Participants were asked six general questions before discussing specific student answers and two afterwards.

Assume x is a list of numbers (ints and/or floats).

1

1a) returns the smallest index in list x

1b) Initialize y to zero. For each index of the
list, check to see if the value at the current index
is less than the value at index y. If so, replace y
with the current index. Return y.

1c) Return the index of the minimum number in
given list

Assume that x is a number 2b) return the absolute value of variable x if it is
negative

2c) makes x positive

2e) returns a negative if the number is negative
and positive otherwise

2f) If x is negative, return x as a positive
number, then return x as a negative

2h) If the variable x is less than zero, return that
variable negative. Otherwise, just return x

2

Assume x is a list of integers and y is an integer

3

3a) Return if y is in list x

Assume x is a list of integers and y is an integer

4

4a) counts how many times a variable is in a list

4b) counts how many values in x are equal to
values in y

4c) increases value of z everytime y is in the list

4d) if a value in given list is equal to the value of
y, increase z by 1, return zAssume x and y are both numbers

5
5a) determines if x is greater than y

5b) returns the largest number

5c) find out which number is bigger

 EipE questions Interview student answers Research Motivation

Good key words, wrong relationship

Canonical multi-structural answer

Correct relational answer, but doesn’t
consider duplicates in given list

Relational, but incomplete answer

High-level, but ambiguous

Ambiguous about how negation works

Incorrect, double return

Multi-structural, but on a short piece of
code

Ambiguous meaning of “return if”, ask
follow-up about “return whether”

Implicitly specifies return and parameters

How is “values in y” interpreted?

Partly relational, partly multi-structural

Incomplete and multi-structural

Incorrect return type/value

Unspecified domain (i.e., parameters)

Ambiguous return type

Figure 3: Participantswere shown 5 EipE questions in the Python language: (1) index ofmin, (2) absolute value, (3)membership,
(4) counting value ‘y’ in list ‘x’, and (5) max. In each, students were asked to describe the highlighted code and provided the
associated type information about the parameters. After understanding each code segment, interview participants were asked
to score a series of student answers. The motivation for the selection of each of these answers is included. The gaps in answer
numbering resulted from redundant questions used during a test interview that were removed because they were redundant.

participant fully understood the code segment before displaying
the student answers. For each student answer, subjects were asked
to discuss: (1) what they liked/disliked about the answer, (2) how
they would grade it on a binary correct/incorrect scale (and why?),
and (3) how they would grade it on a continuous (percentage) scale
(and why?). The sample Python code questions and answers were
based on answers which we found difficult to score in our own
experience, as well as the grading experiences of course teaching
assistants [2, 10].

With IRB approval and informed consent, we video-recorded the
interviews. The audio portion of each recording was transcribed.
The transcripts were inductively coded in groups of 1-3 transcripts
at a time, independently by the same three researchers. After each
group of 1-3 transcripts, the three researchersmet and discussed and
refined emergent themes. Having completed per-transcript analysis,
the three researchers independently summarized the themes from
the coding, and then the group met to arrive at consensus about
the themes. These themes are discussed in Sections 4 to 6.

4 RESULTS: WHY AND HOW TO USE EIPE
QUESTIONS

4.1 Why should we use EipE questions?
The community members that we spoke to suggested a broad range
of motivations for using EipE questions, but the most frequently
occurring was that EipE questions involve abstraction. This abil-
ity to abstract was seen to aid in debugging, communication, and
functional decomposition.

Themost powerful idea in computer science is abstrac-
tion, and [EipE] hits it on the head in a way that’s
very hard to get to.

Others stated that they wanted students to recognize that code
has a purpose and to be able to recognize that purpose like experts
do.

We noticed that when [experts] were looking at ques-
tions, they didn’t immediately trace them, they were
looking for the meaning in the code ... if that’s the
way experts are looking at code, then that’s the way
we should be teaching students to look for meaning
in code.

Additionally, our subjects noted that EipE questions were useful
to instructors as a means of assessing what their students know in
two forms. First, as a means of identifying what misconceptions
the class is holding, and, second, as another instrument (along with
tracing, Parson’s problems, code writing, etc.) to triangulate on a
student’s understanding.

4.2 How do we and should we use EipE
questions?

Our subjects cited two central concerns that influenced their use
of EipE questions: workload and grading difficulty. Many subjects
cited that their “classes tended to be very large and there didn’t
seem to be a way to scale it.” Furthermore, a number of subjects
cited the difficulty of grading EipE questions, citing “the answers
were so messy” and “the difficulty of getting the TAs on the same

page.” These barriers prevented some of our participants from using
EipE questions at all in their courses.

Those subjects that used EipE questions used them in multiple
ways. Most subjects reported primarily using EipE questions on
summative assessment due to the large amount of time and effort
that would be required to grade EipE homework. Those subjects that
reported using such questions on homework typically graded them
for completion rather than correctness. Some subjects attempted to
address the workload issues by casting EipE questions as multiple-
choice questions, often selecting distractors from previous student
work, but they didn’t believe such an implementation to be a real
substitute for free response EipE questions.

In spite of current practice, the majority of subjects believed that
EipE questions were most useful on formative assessments.

Formative, but I think my answer to almost any as-
sessment would be: questions are more useful in a
formative sense... Summative is for producing num-
bers at the end.

In addition, a number of faculty indicated EipE questions should
be included on both homework and exams if used on either. In
addition, they cited the importance of giving feedback.

When we’re doing it for assessment, it’s partially be-
cause we want the assessments to reflect the kinds of
activities that they are doing in class. They’ve seen
these, so we need to ask some of them.

I don’t like to ever test anything that I don’t give on
homework. So, if I’m gonna have it on an exam, I’m
gonna make sure that they can practice with it in
homework, so the exam isn’t a surprise.

Many faculty cited the utility of EipE questions as in-class activ-
ities, typically having students work in pairs or groups to explain
the code to each other. For some, this was a way of engaging the
students with EipE in a way that didn’t require grading, but for oth-
ers this was part of preparing students to succeed on EipE questions
on assessments, which we address in Section 4.3.

4.3 Training students to ‘Explain in plain
English’

The vast majority of our subjects were adamant about the impor-
tance of teaching students how to correctly answer EipE questions.

I think you just have to put in a lot of training work
to make sure that students understand how to answer
them in the way that you will grade them as correct.

You know, you should, in fact, teach students what
you want them to do. And, once I did that, they did
much better, of course.

Participants noted that students initially struggle with EipE ques-
tions both because the task itself is a challenging one and students
struggle understanding the difference between a low-level, line-by-
line description (referred to as multi-structural in the SOLO taxon-
omy as applied to EipE questions [29]) and a high-level, purpose-
oriented description (referred to as relational in SOLO). Faculty
said it was particularly important to show examples of (incorrect)

multi-structural answers and compare them to (correct) relational
answers so that students could learn what constitutes a correct
answer.

The training students receive in answering EipE problems was
a fundamental component of faculty grading practices. Faculty
who had concerns about students’ experience with EipE questions
tended towards leniency in their grading criteria. In contrast, those
that felt that they prepared their students adhered to stricter grading
criteria.

Unless you taught very precisely, used [EipE] ques-
tions a lot throughout the semester and raised these
sorts of issues with [the students] as youwent, I would
be not inclined to hit them too hard in the final test.

If they were to [write a multi-structural answer] in a
summative sense, we would say, “Look, you didn’t do
the thing that we practiced a lot.”

In teaching students to solve EipE questions, a number of partic-
ipants noted that instruction should start with small examples and
work up to more complicated ones.

You have to start with things where the step between
what you’re asking for and what they can do is pretty
small, and then you expand it. It’s the “zone of prox-
imal development” stuff again, right? You make it
bigger and bigger as the term goes on.

5 RESULTS: CRAFTING AND PRESENTING
EIPE QUESTIONS

5.1 What makes a good EipE code segment?
Good EipE code segments are identified by a few common traits.
Most broadly, EipE code segments should be code that “has a pur-
pose.” This is code where the name for the operation or the overall
behavior can be clearly described at a high level. One interviewee
identifies this as, “...the code has to be doing something real,” and
another refers to good EipE code as, “...things that are purposeful
as opposed to kinda random.”

What makes a good question later, I think, is one
where there is a common structure, a structure that
you want them to recognize in a lot of different situa-
tions, which has a general purpose...

Many subjects suggested simple code structures that have been
previously referred to as introductory patterns [3, 12, 13, 23, 28].
Examples include: “find the biggest thing”, “sum up all the elements”,
“a gathering kind of activity”, and checking properties of collections.

One interviewee noted that having loops seemed to be funda-
mental for a piece of code that was suitable for summarization.

I found that mine were usually of the form of a loop
with an if statement inside... I tended to do things
that would either involve arrays or repeated inputs...
where people can sort of identify patterns.

Another interviewee emphasized the importance that the be-
havior of the code should not be guessable from a single line of
code but should require the synthesis of ideas from multiple lines

of code. Using an example of code that checks for an array being
sorted, they said:

And so a student has to make the inference from
looking at each pair that it checks that the whole
array is sorted. Those are the ideal questions, where
the student has to make the inference that the overall
computation does something beyond each piece of it.

Multiple interviewees suggested that there was a sweet spot for
size for EipE code segments. A number of subjects asserted that the
segments should not be too large or complicated because it would
make the problems overwhelming and students might struggle to
identify the correct level at which to describe the code.

So I think that there’s one bucket of things that’s
just, like, too complicated for someone to succinctly
describe or like sensibly abstract and describe.

In contrast, for small code segments, many participants were
worried that there is no discernible difference between relational
and multi-structural answers. One interviewee states that exactly
on a short piece of code, “It’s hard... There’s so little for a student to
(pause) Yeah, there’s almost no distinction between multi-structural
and relational.”

With respect to the presentation of these segments for EipE,
one interviewee noted that there is no need for the segments to be
presented in a specific language. Instead, pseudo code may also be
suitable for displaying the code segments used in EipE questions.

Finally, many interviewees indicated that the code segments that
are suitable for EipE questions are different from those that are
suitable for tracing questions. Code for tracing questions is often
designed not to have an easily guessable purpose so that students
have to diligently perform bookkeeping in order to compute the
code’s output. While tracing questions are sometimes designed to
be tricky, “[EipE] questions are not supposed to be about trickery.”

That’s not a good example for an EipE, because [a
tracing question] is not really doing anything, it’s
just manipulating values within an array for no spe-
cific purpose other than to tell whether or not they
understand how to do nested indexes.

5.2 Tension in choosing names for functions
and variables

Almost universally, our subjects noted a tension when discussing
how EipE questions should be presented with respect to variable
and function names. This tension revolved around the dual desires
of modeling good style to students and not wanting students to be
able to guess answers from variable names alone. When asked how
variables and functions should be named, one subject responded,

Mysteriously: ‘foo’, ‘bar.’ All those good things. Single
letters. So as to not, quote, give away the answer.

Meanwhile, on the good style end, another interviewee cleanly
states the tension: “I struggle with this one, right, because, we talk
a lot about the names of the variables being useful, right, to the
person who’s reading the code, and we ask them to do it...”

Multiple subjects indicated that naming could be used as a way
to modulate question difficulty. EipE questions are easier if the code
uses descriptive names and harder if names are obfuscated. To one
interviewee, obfuscating names comes down to instructor choice
on difficulty and, maybe, even the difficulty of the code itself:

Yeah, I think that’s an instructor choice, where you
can modulate the difficulty... if it’s a piece of code
that is harder for students to understand, I might give
them more clues with variable names. Whereas, if I
think that it’s reasonable for students to be able to
understand it, I might give (pause) single letter (pause)
non-informative names.

In addition to the idea of names as a difficulty modulator, two
subjects suggested approaches to leverage this tension in a peda-
gogically productive way. One suggestion was to use the names as a
scaffolding tool. In this way, EipE questions should use good names
when they are first introduced. As students gain practice with them,
useful names should be removed, but with a clear justification and
explanation:

Later on, we might say, “Here’s a piece of code, you’re
doing this”, you know, “you’re doing the explain ques-
tions again, we have intentionally made the function
name and the variable names not useful”, but we’ll
tell them we’re doing it, right, and we’re doing it for
(pause) “We want you to read this code and under-
stand the pattern”, and we’ll explain that we do it
that way, but early on, everything makes sense [with
naming conventions] because we want to be sort of
consistent with the modeling that we’ve been doing
and what we’ve been telling them that we want them
to do.

The second approach to leveraging this tension is to turn that
tension into a teachable moment during lecture time. EipE questions
should always be presented with obfuscated names and class time
activities with EipE should be used to talk about the importance of
good names for legible code:

On the contrary, if you handle the teaching right, it
encourages them to use meaningful names because
you say, after they’ve answered the question, ... you
can then talk about, “Well, how could we make this
code muchmore easy to understand?” And that would
be by putting in some meaningful variable names. So
you start with the meaningless variables and then
move to a more transparent piece of code by adding
the meaning later, and I think that’s a very powerful
lesson.

6 RESULTS: GRADING EIPE QUESTIONS
In this section, we begin with generalities of grading. We first
discuss grading in theory before moving on to general practical
concerns, including English as a second language. Next, we discuss
the generality of EipE rubrics. At the end of this section, we discuss
specific grading issues.

6.1 How should we grade EipE questions in
theory?

The fundamental challenge of EipE grading is the imprecision of
natural language.

All natural languages are imprecise, unlike code, ...
so people will ... make statements that are not 100%
precise.

While an experienced programmer may know how to precisely
convey an idea and where precision is needed, novices lack that
knowledge and, thus, give imprecise descriptions. This imprecision
creates ambiguity that a grader needs to grapple with.

Is the imprecision because [the students] don’t under-
stand the concept and they’re saying it imprecisely
because they don’t understand that there’s more that’s
needed, or are they saying it imprecisely because
that’s how we speak as humans? We speak very im-
precisely.

Our participants were split about how to deal with this ambiguity.
Roughly half of them felt that their job in grading was to estimate
from a student’s answer how well the student understood the code
and to grade that understanding.

It isn’t a communication activity as much as it is a
personal ability to step away and look at design or
purpose instead of syntactic things. So for us, it’s
more that we’re grading their understanding of what
is happening and less their ability to explain it.

The other half felt that it was important to grade a student’s
ability to communicate the behavior of the code, because trying to
grade a student’s understanding was too difficult or prone to bias.

I think it has to be communication. You know, ... I don’t
think you can read very much into an answer before
you fall into that hole where you’re just making up
what you think they know, when in fact they haven’t
shown– they haven’t demonstrated that they really
knowwhat they’re doing. So I think you have to grade
on what they say and not what you think they meant.

I might know they understand–meaning, I might have
a top student and know they understand something,
but what they deliver actually doesn’t demonstrate
that... So it’s less about how much I know they can
make a free throw, but how much did they actually
make or miss a free throw.

One interviewee expressed that the decision between these per-
spectives might be determined by the size of the code segment used.
Larger patterns may allow for more leeway for small precision or
ambiguity issues.

It’s sometimes really hard to tell apart the two ... If
they explain it wrong, so if it was a bigger one, it could
be a little bit less exact in terms of how we express
the thing ... and the smaller exercises it kind of forces
you to look more in the presentation.

There was much agreement that these two perspectives are
closely related. One interviewee’s immediate response to having to
choose between these perspectives was: “I don’t know that those are
different. It’s very subtle.” Another interviewee noted a prerequisite
relationship between understanding and communication: “I’d like
to believe that they have to understand the code in order to be able
to communicate that to somebody else.”

In contrast, there was universal agreement that describing “cor-
ner case” behavior of code wasn’t necessary on summative assess-
ments for CS 1 students. When asked, no participant took points off
from answer 1c even though it didn’t clearly specify what happens
when multiple copies of the minimum value appears in the list (i.e.,
it returns the lowest index of the two).

So if I were in a higher level course, I would ask for
that preciseness, but not in a CS 1. I’m just more con-
cerned that they understand the- you know, generally,
what’s the behavior.

A few subjects also remarked that they wouldn’t penalize stu-
dents for errors related to things other than coding knowledge (e.g.,
non-trivial mathematical concepts). In the context of answer 2b,
one participant said that they would give the answer full credit,
saying:

I’m not certain that they understand absolute value...
but I’m actually not concerned that they don’t under-
stand the code.

6.2 Practical concerns of EipE grading
Several interviewees have expressed the idea that they would be
more tolerant to ambiguous answers in exam conditions, as exam
anxiety and pressure could lead to poor phrasing of an idea. One
subject noted, in contrast, that grading could be stricter on a lower-
stakes formative assessment to emphasize particular aspects of the
problem.

I certainly don’t like to penalize students when I feel
that there’s poor expression or even some slip of the
pen, so to speak, slip of the tongue, under exam con-
ditions.

Some instructors noted that their assignment of partial credit
would likely be influenced by the students’ performance in aggre-
gate.

Frankly, everyone’s looking to get some sort of a rea-
sonable distribution and a reasonable pass rate out of
their class, so you compromise that in the process of
getting a pragmatic grade distribution. So I suppose
if my pilot marking had found I was getting almost
nobody getting this question right, ..., if I was worried
that I was going to have very few students getting it
right, and I was worried about the overall grade distri-
bution, I might give this half, but it’s an unsatisfactory
answer.

Others cited fairness as a motivation for assigning partial credit.

I would go, “Well, okay, so they understand sort of
what a list is, they understand that they’re checking

for equality, and they understand that they’re incre-
menting something”, so it feels like giving it zero
would be a little unfair.

Faculty noted, however, that one has to be careful in assigning
partial credit lest it might encourage students to brain dump or
write intentionally brief, ambiguous answers.

I have a feeling the student is applying good exam
technique, which is “when you don’t know the an-
swer, put something down and try to make it seem
as plausible as possible.” ... It makes me feel at the
student who’s just trying to get something out of me,
when they don’t really know the answer.

I think this is tricky because, like, if they had said a
little bit more, they might have shown me that they
don’t get it.

Another practical concern was training teaching assistants (TAs)
to grade EipE questions consistently.

The training for getting those TAs to coordinate and
be aligned with each other or even consistent with
themselves is difficult.

6.3 Awareness of English as a Second Language
concerns

A widely noted confounding factor was the potential for English as
a Second Language (ESL) students to run into unique issues while
answering EipE questions. Faculty were hesitant to heavily penalize
problems they perceived to originate from ESL issues. In particular,
answers 2b, 2h, 3a, and 4b brought up ESL concerns.

Apart from the exam conditions, there’s also the is-
sue of just how articulate the student is, especially if
English is the second language. All sort of things crop
up there ... (in relation to the “if it is negative” portion
of 2b)

At this point, my brain is going, “Is this someone who
doesn’t have English as their first language?” And am
I being unfair to them at this point? (in relation to the
“that variable negative” portion of 2h.)

I have a lot of folks who are English as a second
language folks, so I’m sensitive to people trying to
say what they wanna say without saying it the way
I would say it. (in relation to the difference between
“whether” and “if” in 3a.)

There is potentially an English language issue here,
because we sometimes see people pluralizing things
like ‘values’. Some of my students will actually mean,
like, “the value in y”, but they come from a language
that doesn’t pluralize....so we have to be really careful
of that here. (in relation to the “values in y” portion of
4b.)

6.4 Designing a rubric for EipE
Many subjects noted the importance of having a rubric in order
to grade consistently (especially with multiple graders), but when
asked whether a rubric needed to be created on a per-question basis
or if there was a single, universal EipE rubric, the consensus was
that the answer was somewhere in between.

A number of interviewees noted that it was necessary on a per-
question basis to decide what should be included for a complete
answer.

I’d start with the perfect answer... and circle parts of it
that I’m looking for. ... For each question, you decide
what are the pieces that are important.

Having defined a complete answer, there was significant support
for a meta-rubric for grading EipE questions.

I think ideally, you would have a kind of a universal
way of coming at them. “This is the way I grade these
problems.” Y’know, these are the sorts of issues that
I see over and over again. I see that your answer is
incomplete, I see that your answer is incorrect, I see
that your answer is step-by-step when I ask you to
give me the general idea. So I think it’s possible to
have a general approach to grading [EipE].

I think that sort of like taking something like SOLO
and saying, “Okay, what does this level mean for this
question?” I think that there’s, like, you know, maybe
they’ve all got the same bones.

For assigning partial credit, a universal rubric may be possible,
but executing it may require significant pedagogical content knowl-
edge. One subject noted, “Binary, I think you can use a general
rubric. I think it’s really harder when you start to go percentages.”
All of our subjects appeared to use a distance metric from gold
standard answers to assign partial credit,

Here is the perfect answer. Here’s my answer. As
you’re farther and farther away, take points off.

and there were aspects of this distance metric that were universal.
For example, incomplete answers were graded less harshly than
incorrect answers. Other aspects of this distance metric, however,
required knowledge of potential student misconceptions, which
may need to be explicitly communicated to less experienced graders,
even if there is a universal distance metric.

And maybe you need to be thinking explicitly about
what misconceptions are you looking for, not just, like,
generically says some thing wrong (pause) But, like,
specifically, is there evidence [of the misconception].

In Section 7, we attempt to characterize this universal distance
metric by interpreting how our subjects assigned partial credit.

6.5 Specific grading decisions
6.5.1 Relational vs. Correctness. While all subjects agreed that the
best answers were both high-level (relational) and correct, there was
a notable dichotomy in which aspect was preferable if students only

provided one or the other. Some participants preferred correct multi-
structural answers to incorrect relational answers, often citing
concerns that students might not understand what was expected of
them or that many of their students might not be capable of writing
relational answers. One participant that gave no credit for answer
1a (“I think it’s wrong.”) but gave full credit to answer 1b:

Ah, yes, the concrete... (long pause) Which is correct.
... I think I would give it 100% because it is correct,
but it isn’t the kind of answer I really would like to
see.

One participant viewed lifting a multi-structural understanding
to a relational one as taking “that last step” and that writing a
relational answer was “what an A student does versus what a B
student does.”

In contrast, a number of interviewees graded multi-structural
answers such as 1b very strictly, giving them no credit whatsoever.
These subjects asserted that multi-structural answers defeated the
whole purpose of EipE questions. One participant argued that “most
people can do a line-by-line description.” One interviewee that gave
25% partial credit to 1a and gave no credit to 1b said about 1b:

The student did not learn what my main goal was in
teaching them ... about how to read code and how to
answer these types of questions. So I would give this
a zero...

Those that were the most harsh about multi-structural answers
were also often the most vocal about ensuring that students were
well prepared to do EipE questions, suggesting that being unforgiv-
ing about multi-structural answers was fair if students had been
trained.

Early on, we do see a lot of this, right, but it’s happen-
ing in class and lecture, and we tell them this is– “You
get a zero for this because you’re not actually doing
what we’re asking you to do.” So when it came to a
summative point of view, we would give them that
zero.

One subject indicated that it was important to not give partial
credit for multi-structural answers, because it might cause students
that weren’t sure of their relational answer to hedge and submit a
multi-structural answer to guarantee some points.

A number of subjects noted that mentioning local variables (e.g.,
“z” in 4c and 4d) was typically indicative of multi-structural answers.

I don’t like this at all. ... Never use a local variable. ...
We call this a data abstraction violation. ... What the
heck is “z”?

6.5.2 Precision matters, but colloquialisms are acceptable. Precision
often came up with respect to answer 1a, where the use of “smallest
index” was consistently penalized for an incorrect assembling of
key words. One interviewee noted, “I like the word ‘smallest’. I
like the word ‘index’. Unfortunately, not right next to each other.”
Word order here matters, as it impacts the way the answer is parsed.
Returning “the smallest index” has a clear meaning, one that our
subjects had trouble ignoring.

They’re not that far off, right, I think they kind of have
a clue what this is doing, but they’re not being precise
enough...they put their English together wrong...

In contrast, there were other times where imprecise answers
were accepted, sometimes grudgingly. In these cases, an experi-
enced programmer would make the correct interpretation in spite
of the imprecision; one subject referred to these as “colloquialisms.”
This occurred most notably with answers like 4a, where saying
the function “counts ...” implies that the count is returned. Most
participants prefer wording like “returns a count of ...”, but gave full
credit to 4a with sentiments like “I don’t love how it’s worded, but
that doesn’t really matter.” Similarly, in reference to 2f’s use of “x as
a positive number”, one interviewee states it is not their “favorite
way to put it, but I would probably take it on an exam.” Some inter-
viewees even left explicit returns off of their own answers when
confirming they understood a given piece of code.

One participant notes that it can be hard for students to under-
stand where precision is required and where one can take shortcuts.

... the details matter in coding, and the problem is that
most people who don’t code don’t recognize which
details matter and which don’t.

6.5.3 Returns can be implicit so long as the return type is clear. As
noted in the previous paragraph, our subjects accepted student
answers that implicitly specified the return.

I’m trying to figure out, like, if I really need them to
say the word return. I don’t think I do because ... that’s
just the process of how computers and functions are
working. It doesn’t need to be there necessarily to
describe what the code does.

Our participants were unforgiving, however, if implicitly speci-
fying the return suggested that the wrong type of value was being
returned. Multiple interviewees took umbrage with 5a because
“determines” suggests a Boolean return type.

I like that they’re noting that it’s comparing “x” to
“y” and determining which one is greater, but their
answer suggests that they think it’s like returning a
Boolean. So they’re not really noting that it’s return-
ing the larger of the two values.

So I would give this a zero, because I do think it’s
important to recognize that beyond determining “if x
is greater than y”, values are returned differently, you
return “x” if it’s greater and “y” otherwise.

Answer 3a is interesting in this regard, because there are two
possible ways to parse the sentence. First, the return itself might
be conditional, but without specifying the return value. Second, it
could be returning a Boolean indicating membership of an integer
in a list. One interviewee who parsed it as the first said:

They clearly understand that you’re looking for ‘y’ in
the list ‘x’, but they have failed to capture the notion
that you’re going to return either true or false. So this
one is incorrect.

Interestingly, interviewees universally consider the answer cor-
rect when “whether” is substituted for “if” in answer 3a. Whether
seems to unambiguously indicate a Boolean return type.

Oh, that would have been 100%. Yes. ‘Cause ‘whether’
is a true or false? Yeah.

Another interviewee prefers “whether” to “if” also because it
abstracts the student answer from the language keywords present
in the provided code, suggesting relational reasoning.

What I like about that answer, “whether,” is that it has
substituted the keyword “if” ... When I see a student
move away from keywords and what have you, I see
some sort of abstraction process going on. ... My initial
interpretation of that answer [with “if”] is that they’re
prettymuch tellingmewhat that one third line of code
does; they’re just saying in words that the third line
does.

Intriguingly, there was no consensus among our subjects as to
the return type of “find out” in answer 5c. In general, 5c earnedmore
partial credit than 5a, indicating that there was more ambiguity of
its return type. Some participants scored 5c completely correct.

6.5.4 The computation’s inputs can also be implicitly specified. Like
return values, our interviewees prefer students to be explicit about
the inputs to the computation. Some prefer students to include
the variable names of input values directly in their answer. Others
prefer that inputs are specified by role (e.g., “a given list”). Most of
the time, there is little to no penalty for not explicitly specifying
variable names so long as the inputs can be mapped unambiguously
to the provided code.

Furthermore, our subjects were generally accepting of implicitly
specifying the functions inputs. Answer 5b “returns the largest
number” explored this issue because it leaves the domain of the
computation completely unspecified. While the student’s answer
leaves open the possibility that the input could be something like
the set of all representable numbers, none of our participants con-
sidered that possibility. Almost all participants gave this answer
full credit. The two exceptions gave it a large amount of partial
credit, penalizing the use of “largest” instead of “larger”.

I would give them ... 80%. I would have preferred if
they had said, “returns the larger of x and y.” “Largest”
implies more than two.

7 DISCUSSION
7.1 What process are graders using to interpret

EipE answers?
Looking at the collection of scores that our participants assigned
holistically, we can attempt to make inferences about how experi-
enced educators approach EipE grading. We liken it to Bayesian
statistical inference, where a grader has a prior probability distri-
bution of possible errors that a student could make that influences
their interpretation of the correctness of ambiguous student an-
swers. Mostly notably, our experienced instructors had knowledge
of common student misconceptions and English competency that
was triggered by some student answers. If we are accustomed to

students speaking in a certain way, we are more likely to assume
they know what they are doing even if they leave some of the finer
details out. Similarly, if we are attuned to students making certain
mistakes in their code, then we are predisposed to notice and punish
those errors so that students correct their misunderstandings.

Answer 4b (“count how many values in x are equal to values in
y”) illustrates this phenomena clearly. There are three interpreta-
tions of the second “values” (which should be the singular “value”)
in that answer: (1) it is a typo and inconsequential, (2) it is a gram-
mar or ESL issues and not an understanding issue, or (3) students
misconceive ‘y’ as a list. Most participants initial interpretation is
the third one (type error); we presume that this is from lots of prior
experience with students failing to properly distinguish between
types. While some harshly penalize this as a serious correctness
issue, others then consider a second interpretation as an ESL issue
(as noted in Section 6.3). Those that arrive at this second inter-
pretation generally are more accepting of this answer, scoring it
correctly or nearly correctly. While the misspelling/typo in answer
4c (“everytime”) received no comment or penalty, every one of our
participants commented on “values”, but none of them indicated
that “values” could have been a typo.

7.2 Is a universal distance metric for partial
credit possible?

Overall, we saw trends in how our subjects assigned partial credit
that suggest that our community might be able to agree on a univer-
sal “how far is this student answer from my gold standard answer?”.
We discuss the general trends that lead to this conclusion.

First, on the issue of scoring multi-structural answers raised
in Section 6.5.1, we believe that if students are given sufficient
instruction on and practice with EipE questions before assessment
and multi-structural answers are graded consistently throughout
the semester, then it is likely acceptable to assign them low scores.
Furthermore, we agree with one subject that a student answer that
includes both a multi-structural and relational answer together can
be graded as a relational answer.

Second, we observed that incomplete or ambiguous descriptions
of code generally received more partial credit than perceived incor-
rect answers. Ambiguous description leaves room for graders to
assume a student knows what is going on or generously assume
that unstated details are implicit, rather than the alternative expla-
nation that students may not actually understand the code. Scores
for incomplete answers were generally proportional to complete-
ness, with answers that were closer to fully specified receiving more
partial credit than answers that left out more significant pieces.

Third, we found that subjects penalized answers that suggested
that the student didn’t understand the language more harshly than
answers that suggested that the student didn’t understand the code.
The clearest example of this is the suggestion that the function
returns multiple times in answer 2f, which was typically assigned
very low scores.

What’s really wrong (pause) is then they go on to
say, “then return x as a negative,” and you only return
once. So they clearly do not understand the nature of
returns.

Another instance of a perceived language misconception being
penalized harshly came from answer 2c’s “make x positive”, where
some subjects perceive that the student believes that the contents of
variable x is being updated rather than a new value being returned.

No, I think I would fail that actually, ’cause I think
that shows a fundamental misunderstanding about
what functions do.

In contrast, answers that were strictly incorrect, but where the
issue was perceived to lie with understanding that specific code and
not the language, were more likely to receive partial credit. Many
subjects engaged in a practice that we referred to as some good, some
bad to assign non-trivial amounts of partial credit. For example,
even though 1a’s “the smallest index” was routinely considered
incorrect on a binary scale, the presence of “smallest” and “index”
led many to give the answer around half credit.

Establishing this universal distance metric would support the
construction of NLP autograders. Given consistent and scalable
scoring presents a barrier to the use of EipE questions, an NLP
autograder built upon an agreed universal standard could be widely
adopted as a way to utilize EipE in classes. Even if such an auto-
grader’s scores are not assigned exactly as an instructor might have
chosen, machine scoring removes the inconsistency from having
multiple graders.

8 LIMITATIONS
We identified three main limitations with our work: subject pool,
answer selection, and answer ordering. First, due to the labor inten-
sity of the qualitative research methods used, we only interviewed
11 participants. While we have some confidence that we sampled
to saturation, we cannot be sure that with additional subjects or
different subjects that our conclusions might not be somewhat
different.

Second, in hindsight, our selection of student answers incom-
pletely characterized the partial orderings for the distance metric
discussed in Section 7.2. For example, none of the answers we
presented were relational but egregiously wrong. As such, we are
unable to compare the community’s opinions on egregiously wrong
relational answers versus perfectly correct multi-structural answers,
which would shed further light on the correctness vs. relational
issue.

Additionally, our collection of answers included only one exam-
ple of an innocuous spelling or grammar mistake (4c’s “everytime”).
While we believe that our interviewees would consider them as
inconsequential, a single example provides little support for that
assertion, and we don’t know if there is a point at which having
too many such mistakes has consequences.

Lastly, our study is potentially vulnerable to ordering effects.
While not every interviewee saw every answer, either due to selec-
tion on our end or running out of time during the interview, we did
present questions in mostly the same order across the interviews.
If there is an ordering effect that results from seeing one answer
before another — for example, 5a before 5b and 5c — our results do
not allow us to account for that. It is unclear to us that would have
led to any major differences in observed themes, but future studies
on EipE grading should control for that possibility.

9 CONCLUSION
In this paper, we attempted to tap into the introductory program-
ming research community’s expertise around “Explain in plain Eng-
lish” code reading questions. We believe that we’ve synthesized this
knowledge so as to identify a series of suggested practices relating
to their use and grading in CS 1 courses. In particular, we provide
guidance on the selection and presentation of EipE questions, on
training of students to complete EipE questions, and on the integra-
tion of EipE questions into courses. To follow best practice, EipE
questions should be summarizable segments of code, not so small
that there is no difference between relational and multi-structural
answers but not so large as to defy clear and concise description.
Introductory patterns may be some of the best code to use for EipE
questions given their size and explainability. Instructional time
must be spent training students how to answer EipE questions and
grading expectations must be clearly laid out to students. If uti-
lized well, EipE may both serve as excellent formative activities for
students as well as a productive way to getting students thinking
about abstraction in programming by having them recognize code
snippets with clear, summarizable purposes.

In addition, we discuss grading of EipE questions on both theoret-
ical and practical levels and characterize the community’s standards
relating to the relative value of different kinds of answers. Relational
answers are preferable to multi-structural answers. Incomplete-
ness and ambiguity tend to be more acceptable than incorrectness.
Small errors and possible typos are often permitted, but apparent
misconceptions about the programming language are harshly pun-
ished. From these standards, it may be possible to define a universal
distance metric from students’ answers and an instructor’s gold
answer. In turn, establishing these standards and this metric may
allow for NLP autograders to be developed and used to empower
larger classes to use EipE questions in a scalable fashion.

Our interviews paint a picture of EipE questions being under-
utilized by the community. While our interviewees overwhelmingly
perceived value in EipE questions, they rarely used EipE questions
in their own teaching to a commensurate degree. We hope that this
distillation of knowledge is useful both for instructors who want
to introduce EipE questions into their courses for the first time as
well as tool/content builders that will build EipE resources for use
by others.

ACKNOWLEDGMENTS
Our deepest gratitude goes to the members of the community that
shared their time and insights with us.

REFERENCES
[1] Owen Astrachan and David Reed. 1995. AAA and CS 1: The Applied Appren-

ticeship Approach to CS 1. In Proceedings of the Twenty-sixth SIGCSE Technical
Symposium on Computer Science Education (Nashville, Tennessee, USA) (SIGCSE
’95). ACM, New York, NY, USA, 1–5. https://doi.org/10.1145/199688.199694

[2] Sushmita Azad, Binglin Chen, Maxwell Fowler, Matthew West, and Craig Zilles.
2020. Strategies for Deploying Unreliable AI Graders in High-Transparency High-
Stakes Exams. In International Conference on Artificial Intelligence in Education.
Springer, 16–28.

[3] Walter Beck, S. Rebecca Thomas, Janet Drake, J. Philip East, and Eugene Walling-
ford. 1996. Pattern Based Programming Instruction. In 1996 Annual Conference.
ASEE Conferences, Washington, District of Columbia. https://peer.asee.org/6228.

[4] John B. Biggs and K. F. Collis. 1982. Evaluating the quality of learning : the SOLO
taxonomy (structure of the observed learning outcome) / John B. Biggs, Kevin F.
Collis. Academic Press New York. xiii, 245 p. : pages.

[5] Binglin Chen, Sushmita Azad, Rajarshi Haldar, Matthew West, and Craig Zilles.
2020. A Validated Scoring Rubric for Explain-in-Plain-English Questions. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(SIGCSE).

[6] Michael J. Clancy and Marcia C. Linn. 1999. Patterns and Pedagogy. In The
Proceedings of the Thirtieth SIGCSE Technical Symposium on Computer Science
Education (New Orleans, Louisiana, USA) (SIGCSE ’99). ACM, New York, NY,
USA, 37–42.

[7] Malcolm Corney, Sue Fitzgerald, Brian Hanks, Raymond Lister, Renee McCauley,
and Laurie Murphy. 2014. ’Explain in Plain English’ Questions Revisited: Data
Structures Problems. In Proceedings of the 45th ACM Technical Symposium on
Computer Science Education (Atlanta, Georgia, USA) (SIGCSE ’14). ACM, New
York, NY, USA, 591–596. http://doi.acm.org/10.1145/2538862.2538911

[8] Malcolm Corney, Raymond Lister, and Donna Teague. 2011. Early Relational Rea-
soning and the Novice Programmer: Swapping As the "Hello World" of Relational
Reasoning. In Proceedings of the Thirteenth Australasian Computing Education
Conference - Volume 114 (Perth, Australia) (ACE ’11). 95–104.

[9] Adrienne Decker, LaurenMargulieux, and BrianaMorrison. 2019. Using the SOLO
Taxonomy to Understand Subgoal Labels Effect in CS1. ICER’19 - Proceedings of
the 2019 ACM Conference on International Computing Education Research, 209–217.
https://doi.org/10.1145/3291279.3339405

[10] Max Fowler, Binglin Chen, Sushmita Azad, Matthew West, and Craig Zilles. 2021.
Autograding "Explain in Plain English" questions using NLP. In Proceedings of the
52nd ACM Technical Symposium on Computer Science Education (Virtual Event,
USA) (SIGCSE ’21). Association for Computing Machinery, New York, NY, USA,
1163–1169. https://doi.org/10.1145/3408877.3432539

[11] Fernand Gobet, Peter CR Lane, Steve Croker, Peter CH Cheng, Gary Jones, Iain
Oliver, and Julian M Pine. 2001. Chunking mechanisms in human learning. Trends
in cognitive sciences 5, 6 (2001), 236–243.

[12] Vighnesh Iyer and Craig Zilles. 2021. Pattern Census: A Characterization of
Pattern Usage in Early Programming Courses. In Proceedings of the SIGCSE
Technical Symposium (SIGCSE).

[13] Joe Bergin. 1998. Patterns for Selection. http://csis.pace.edu/~bergin/patterns/
Patternsv5.html.

[14] Raymond Lister. 2020. On the Cognitive Development of the Novice Programmer:
And the Development of a Computing Education Researcher. Association for
Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3442481.
3442498

[15] Raymond Lister, Elizabeth S Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, Beth Simon, and Lynda Thomas. 2004. A multi-national study of reading
and tracing skills in novice programmers. ACM SIGCSE Bulletin 36, 4 (2004),
119–150.

[16] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a
Relationship Between Explaining, Tracing and Writing Skills in Introductory
Programming. In Proceedings of the 14th Annual ACM SIGCSE Conference on
Innovation and Technology in Computer Science Education (Paris, France) (ITiCSE
’09). ACM, New York, NY, USA, 161–165. https://doi.org/10.1145/1562877.1562930

[17] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a
Relationship Between Explaining, Tracing and Writing Skills in Introductory
Programming. In Proceedings of the 14th Annual ACM SIGCSE Conference on
Innovation and Technology in Computer Science Education (Paris, France) (ITiCSE
’09). ACM, New York, NY, USA, 161–165. https://doi.org/10.1145/1562877.1562930

[18] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships between reading, tracing and writing skills in introductory program-
ming. In Proceedings of the Fourth International Workshop on Computing Education
Research. ACM, 101–112.

[19] Sandra P Marshall. 1995. Schemas in problem solving. Cambridge University
Press.

[20] Katherine B McKeithen, Judith Spencer Reitman, Henry H Rueter, and Stephen C
Hirtle. 1981. Knowledge organization and skill differences in computer program-
mers. Cognitive Psychology 13, 3 (1981), 307–325.

[21] LaurieMurphy, Sue Fitzgerald, Raymond Lister, and RenéeMccauley. 2012. Ability
to ’Explain in Plain English’ Linked to Proficiency in Computer-based Program-
ming. ICER’12 - Proceedings of the 9th Annual International Conference on Interna-
tional Computing Education Research. https://doi.org/10.1145/2361276.2361299

[22] Laurie Murphy, Renée McCauley, and Sue Fitzgerald. 2012. ’Explain in Plain
English’ Questions: Implications for Teaching. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education (Raleigh, North Carolina,
USA) (SIGCSE ’12). ACM, New York, NY, USA, 385–390. https://doi.org/10.1145/
2157136.2157249

[23] Owen Astrachan and Eugene Wallingford. 1998. Loop Patterns. https://users.cs.
duke.edu/~ola/patterns/plopd/loops.html.

[24] Robert S Rist. 1989. Schema creation in programming. Cognitive Science 13, 3
(1989), 389–414.

[25] John Sweller. 2011. Cognitive Load Theory. In Psychology of learning and
motivation. Vol. 55. Elsevier, 37–76.

https://doi.org/10.1145/199688.199694
http://doi.acm.org/10.1145/2538862.2538911
https://doi.org/10.1145/3291279.3339405
https://doi.org/10.1145/3408877.3432539
http://csis.pace.edu/~bergin/patterns/Patternsv5.html
http://csis.pace.edu/~bergin/patterns/Patternsv5.html
https://doi.org/10.1145/3442481.3442498
https://doi.org/10.1145/3442481.3442498
https://doi.org/10.1145/1562877.1562930
https://doi.org/10.1145/1562877.1562930
https://doi.org/10.1145/2361276.2361299
https://doi.org/10.1145/2157136.2157249
https://doi.org/10.1145/2157136.2157249
https://users.cs.duke.edu/~ola/patterns/plopd/loops.html
https://users.cs.duke.edu/~ola/patterns/plopd/loops.html

[26] John Sweller, Jeroen JG Van Merrienboer, and Fred GWC Paas. 1998. Cognitive
architecture and instructional design. Educational psychology review 10, 3 (1998),
251–296.

[27] Anne Venables, Grace Tan, and Raymond Lister. 2009. A Closer Look at Tracing,
Explaining and Code Writing Skills in the Novice Programmer. In Proceedings of
the Fifth International workshop on Computing Education Research. ACM, 117–128.

[28] Eugene Wallingford. 1996. Toward a First Course Based on Object-oriented
Patterns. In Proceedings of the Twenty-seventh SIGCSE Technical Symposium on
Computer Science Education (Philadelphia, Pennsylvania, USA) (SIGCSE ’96). ACM,
New York, NY, USA, 27–31. https://doi.org/10.1145/236452.236485

[29] Jacqueline Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Robbins,
P K Ajith Kumar, and Christine Prasad. 2006. An Australasian study of Reading
and Comprehension Skills in Novice Programmers, using the Bloom and SOLO
Taxonomies. Eighth Australasian Computing Education Conference (ACE2006)
(2006).

[30] Susan Wiedenbeck. 1985. Novice/expert differences in programming skills.
International Journal of Man-Machine Studies 23, 4 (1985), 383 – 390. https:
//doi.org/10.1016/S0020-7373(85)80041-9

[31] Leon E. Winslow. 1996. Programming Pedagogy— a Psychological Overview.
SIGCSE Bull. 28, 3 (Sept. 1996), 17–22. https://doi.org/10.1145/234867.234872

https://doi.org/10.1145/236452.236485
https://doi.org/10.1016/S0020-7373(85)80041-9
https://doi.org/10.1016/S0020-7373(85)80041-9
https://doi.org/10.1145/234867.234872

	Abstract
	1 Introduction
	2 Related work
	3 Method
	4 Results: Why and How to use EipE Questions
	4.1 Why should we use EipE questions?
	4.2 How do we and should we use EipE questions?
	4.3 Training students to `Explain in plain English'

	5 Results: Crafting and Presenting EipE Questions
	5.1 What makes a good EipE code segment?
	5.2 Tension in choosing names for functions and variables

	6 Results: Grading EipE Questions
	6.1 How should we grade EipE questions in theory?
	6.2 Practical concerns of EipE grading
	6.3 Awareness of English as a Second Language concerns
	6.4 Designing a rubric for EipE
	6.5 Specific grading decisions

	7 Discussion
	7.1 What process are graders using to interpret EipE answers?
	7.2 Is a universal distance metric for partial credit possible?

	8 Limitations
	9 Conclusion
	Acknowledgments
	References

