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ABSTRACT

Expert programmers rarely think at the syntactic level. Instead, they
think at higher levels of abstraction, mentally “chunking” groups
of syntactic elements into a single abstraction. Explicitly teaching
common “chunks” in early programming courses has been pro-
posed in the research literature using the term "pattern-oriented
instruction”, but this practice appears not to be emphasized, nor is
there a consensus about which patterns to teach or in what order.

In this paper, we explore the set of patterns that students are
expected to learn, independent of whether they are taught explicitly
or must learn implicitly. Specifically, we studied the instructor solu-
tions to homework and exams from 12 introductory CS courses from
nine universities, identifying the presence of 15 patterns throughout
the semester. We present results about the relative frequency of the
patterns and the order in which the patterns tend to be introduced.
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1 INTRODUCTION

When programming, experts rarely think about syntax during plan-
ning and design. Instead they tend to use programming language
features in idiomatic ways and tend to think about their programs
using higher-level chunks. As discussed in Section 2.1, thinking at
a granularity larger than individual syntax elements reduces cogni-
tive load, which makes cognitive resources available for problem
solving.
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While we could allow our students to discover these common
idioms on their own, it has been proposed that instructors actively
teach them as “patterns” that students can use to solve specific prob-
lems. Such instruction, referred to as pattern-oriented instruction,
draws inspiration from the notion of “design patterns” developed by
the object-oriented programming community [12]. A description of
this prior work can be found in Section 2.2, and, in recognition to
this previous work, we will use the term pattern to describe these
common general-purpose programming idioms in this paper.

More recently, a theory of instruction for introductory program-
ming [42] suggests that after learning to read and write syntactic
elements, students should be taught to recognize and comprehend
common programming patterns and then to use and compose them
to solve problems. While it can be assumed that many instructors
cover some patterns in at least an ad hoc manner in their courses,
we find little documentation in the research literature providing
guidance about the patterns that should be introduced and how
they should be sequenced.

In an effort to help fill this gap, this paper reports on a study to
investigate empirically which patterns students in CS 1 courses are
expected to learn. We undertook this study not by looking at the
instructional materials to see what the students were taught, but
rather by looking at the assessment materials to see what students
were expected to know. Specifically, we looked at the instructor
solutions for both homework and exams in a collection of 12 early
programming courses from nine universities and identified which
patterns were present in each assessment in each course. We did
this with the intention of answering two research questions:

(1) Isthere (empirically) a consensus about which patterns should
be taught in early programming courses?

(2) Is there (empirically) a consensus about how these patterns
should be sequenced?

In the courses we analyzed, we find that there is significant
consensus among which patterns are covered. We found 9 of the
15 patterns that we counted in at least 9 of the 12 classes studied.
Furthermore, we found 5 of the remaining patterns in 3 or fewer of
the 12 classes. Of these five, we consider three of them to be lan-
guage dependent, appearing only in specific languages or language
families. The remaining pattern was found in 5 of the 12 courses.

In contrast, there seems to be much less consensus about the
sequence that the patterns should be introduced. While there are
logical, general trends observable from the data, there is such high
variance between classes. As such we caution against using the
derived sequence information as guidance on what should be done.
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2 BACKGROUND

2.1 Chunking to reduce cognitive load

An important difference between novice and expert programmers
is that novices have trouble identifying important elements of code,
because their lack of knowledge forces them to process each element
of the code individually [13]. Experts can automatically ‘chunk’
multiple elements and process them as one unit [7, 13, 21, 41]. These
chunks bring multiple, interconnected elements of information into
a single cohesive unit with a specific function [20], allowing them
to be treated as a single unit and reducing the cognitive load they
induce [33]. These chunks, or schemata as they are referred to in
Cognitive Load Theory, are developed through repeated experiences
that have identifiable features in common [20].

There is significant support for the existence of these pattern-like
chunks in the programming education literature, where they have
been referred to as plans, templates, schemata, and idioms [7, 30],
and they play a significant role in what it is to be an expert program-
mer. Experienced programmers have been shown to be much better
at memorizing code snippets, especially the control flow constructs
and the location of separators [15]. Wiedenbeck found that expert
programmers carry out low-level programming comprehension
activities faster than novices, finding that experts had “automated”
these processes, so that little mental attention was required [40].
A leading theory of program understanding for unfamiliar code is
bottom-up, where programmers chunk code statements into higher
level abstractions which are aggregated further until a high-level
understanding of the program is attained [26, 32]. Vessey found
that a programmer’s ability to chunk effectively was highly predic-
tive of their ability to debug provided programs [38]. Shneiderman
and Mayer [32] find that the “encoding process by which program-
mers convert the program to internal semantics is analogous to the
‘chunking’ process first described by George Miller in his classic
paper, ‘The Magical Number Seven Plus or Minus Two.”

Schemata mean that more complex problems can be handled [25]
and working memory resources are available for problem solv-
ing [34], but novel problem solving activities (e.g., code writing)
are not the most effective ways of developing schemata. The high
cognitive load induced by problem solving inhibits schema construc-
tion [35]. For novice learners, learning and performing conventional
tasks are different and incompatible processes [25].

Instead, lower cognitive load tasks are recommended for schemata
construction, including worked examples [3, 25, 35, 37]. Wieden-
beck suggested that the teaching of novice programmers should
“stress continuous practice with basic materials” until the novices
have automated the practice, including an early emphasis on pro-
gram comprehension and tracing, with the aim of automating basic
skills, so they could later concentrate on problem-solving [40]. Code-
reading exercises with automated feedback [10] could be a scalable
means of providing low-cognitive load practice. When students had
relevant schemata available, Rist found that students could and did
reason forward from plan to code [29].

2.2 Pattern-oriented instruction

When facing a novel problem, students often don’t know “where
to start” and experience difficulties in understanding the essen-
tial challenges in a problem and transferring ideas from previous

Table 1: Properties of courses analyzed in this work

Class Target Population Language | Term length
A (non-CS) STEM majors Python | semester
B (non-CS) STEM majors Python | semester
C non-technical majors Python | semester
D CS majors Java semester
E no prior programming exp. Java 1st quarter
F CS majors Java 1st quarter
G CS + STEM majors C++ 1st quarter
H non-majors Python | semester
I no prior programming exp. | Python | semester
J majors + non-majors Java semester
K majors + non-majors C semester
L majors + non-majors Java 2nd quarter

solutions [19, 24]. Previous work has attempted to explicitly facil-
itate schema construction and plan development in code writing
activities. Van Merriénboer proposed completing partially written
programs as a lower cognitive load activity than program gener-
ation [22, 36]. Several educators have proposed “apprenticeship”
and “case study” models, where students learn to program by first
reading and modifying programs that have been written by ex-
perts [1, 18].

In addition, a number of researchers have proposed teaching
design patterns directly to novices, under the moniker pattern-
oriented-instruction (POI) [4, 8, 9, 14, 23, 24, 28, 39]. Patterns are
characterizations of abstract solutions to common problems [11].
Most relevant to this paper are the efforts to identify and teach
novice micro-patterns (e.g., selection, process-all-items) [2, 4, 6, 8,
19, 27]. The abstract nature of pattern abstraction, however, can
be challenging for novices to understand; novices benefit from
constructive rules (do this under this circumstance) more than the
descriptive rules of traditional patterns [7].

It has been found that POI enhances problem solving compe-
tence [24]. Specifically, it promotes: (1) approaching a problem
and formulating an idea for a solution, (2) better recognition of
the problem’s type, and (3) the ability to recognize subtasks and
their corresponding patterns, to identify relationships between sub-
tasks, and to construct an algorithm composed of the subtasks’
solutions [24]. However, while designing patterns for CS1 students,
it is extremely important to note that if patterns are too narrow or
inflexible, students rarely use them [7].

While not specifically patterns, the concept of “Roles of Vari-
ables” [5, 17, 31] is closely related. This work recognizes that the
usage of many variables, especially in novice code, can be charac-
terized by a relatively small number of patterns, and that explicitly
teaching students to recognize these patterns can aide them in
learning to read and write code.

3 METHOD

We evaluated the expectations on students to learn patterns in intro-
ductory programming courses by analyzing the courses assessment
materials. We chose to focus on the assessment materials of the
courses, rather than the instructional (e.g., lecture, learning objec-
tives) materials, because the assessment materials more directly
demonstrate what the students were responsible for learning. In



Table 2: Patterns counted in this work

Name [ Description [ Previous Usage

booleanOperatorChaining | This pattern involves using compound boolean expressions (e.g., (x < 7) && | No previous citations
(x > -7) as part of a single conditional statement (e.g., if, while, for).

multiWayBranching This pattern relates to the appropriate use of else if and else clauses in | Presented among selec-
complex conditionals tion patterns [6]

swapping This pattern switches the values stored in two variables by using a temporary | Used in  previous
variable study [42]

digitProcessing This pattern involves accessing specific digits in a multiple-digit integer by | Used in  previous
repeatedly using the modulus operator to access the rightmost digit and then | study [42]
using floor division to drop the rightmost digit

processAllltems This pattern involves iterating over a collection to perform an operation on each | Presented among loop
item of a collection patterns [2]

sum This pattern involves a numeric variable (often initialized to 0) that has added to | Presented as use of a
it the values in a collection. Summing elements may be done conditionally. gatherer [31]

average This pattern is an extension to the sum pattern, where the resulting value is then | No previous citations
divided by the number of elements in the collection (potentially computed using
the counting pattern).

counting This pattern involves an integer variable (typically initialized to 0) that gets incre- | Presented as use of a
mented under certain circumstances (typically in a loop, perhaps conditionally). | stepper [31]

reverse This pattern takes an ordered collection and produces the new ordered collection | No previous citations
containing the same elements in the reversed ordered.

loopAndHalf This pattern is used when processing input elements where the end isn’t known | Presented among loop
ahead of time; such loops need to read and process each element, and, upon | patterns [2]
reaching a sentinel value (indicating the end of the input), the loop needs to be
executed before processing the sentinel element

linearSearching This pattern is a special case of processAllltems where each element of a collection | Presented among loop
is checked to see if it fits a criteria and the first matching element is returned patterns [2]

findBestInCollection This pattern is a special case of processAllltems where an auxiliary variable is used | Presented among loop
to track the “best” value encountered so far, and each element of the collection | patterns [2]
is compared to this “best” variable, replacing it if the new value is “better”

filterACollection This pattern is a special case of processAllltems that produces a new collection | No previous citations
by considering each element of an existing collection for inclusion in the new
collection

privatelnstanceVars This pattern involves making class/instance variables private so that they cannot | standard OO encapsula-
be accessed directly tion pattern

publicGetSet This pattern involves providing public getters and setters to private class/instance | standard OO encapsula-
variables . tion pattern

particular, we focused on collecting instructor solutions for each of
the code writing assessments in the these courses. Because there are
potentially many ways of solving code writing questions, using the
instructor solutions clearly indicates the instructor’s intended way
of solving the problem. We focused on code writing questions and
not code tracing, comprehension, or Parson’s problems, because
they present the clearest picture of the course’s expectations for
students’ code writing abilities. For each course, we reviewed the
course’s homework assignments, quizzes, and exams. In a small
number of cases, practice exams were substituted for exams when
exam solutions were not available. In a few courses, lab assignments
were also included.

We solicited and received assessment materials from 12 courses
from a total of nine different North American universities. These
courses varied in the targeted student population and programming
language of instruction, as indicated by Table 1. Descriptions of the

target population were provided by the instructors that provided
the materials. Some of the universities were on quarters, while
others were on semesters, and that is also noted in the table. Class L
is a CS 2 course, but because it is a quarter length course, it overlaps
with the content in some of the semester length CS 1 courses (e.g.,
class D), so we included it in our analysis. We did not review the
instructional materials of these courses, so we do not know the
extent to which they practiced pattern-oriented instruction.

The patterns that were used in this census were drawn from
three sources: 1) the patterns identified in the pattern-oriented
instruction literature discussed in the previous section, 2) reviewing
two CS 1 textbooks and attempting to identify patterns from the
code examples and homework solutions contained in the books,
and 3) identifying additional patterns from the instructor solutions
themselves. The authors reviewed the candidate patterns and settled



on the list presented in Table 2 and discussed in Section 4 for this
study.

After reviewing a number of code examples to ensure that the
authors agreed on which patterns were present, one researcher
(Iyer) manually examined each of the instructor solutions to identify
the patterns present. The number of instances of each pattern was
recorded at the granularity of an assessment (e.g., a homework,
quiz, or exam; not individual questions). These records were sorted
chronologically for the purpose of the analysis. The analysis of this
data is presented in Section 5.

4 CATALOG OF PATTERNS

In this section, we describe the set of patterns that were counted as
part of this census. The pattern names, descriptions, and whether
the pattern previously appeared in the research literature is indi-
cated in Table 2. There are (in order) two conditional patterns, one
data movement pattern, ten repetition patterns, and two object
patterns. Longer descriptions and examples of the patterns can be
found in Iyer’s M.S. thesis [16].

While most of the patterns are straightforward, a few benefit
from further explanation. digitProcessing is sometimes introduced
as an application of loops that doesn’t require collections in lan-
guages where loops are taught before arrays (i.e., Java/C++). The
reverse pattern seems to be commonly introduced in the context
of strings. While we understand that some might not consider pri-
vatelnstanceVars and publicGetSet as patterns per se, but since they
meet our criteria of being logical constructs involving collections
of syntactic elements, we include them for completeness.

5 RESULTS

Table 3 indicates which of the patterns were present in each of the
classes we studied. It can be seen that there is significant variation
between the courses, but there are some patterns that students
must learn in almost all of the courses. Both branch patterns—
booleanOperatorChaining, multiWayBranching—were found in 11
of the 12 classes, which is not surprising because they are com-
monly used even in simple programs. Seven of the loop patterns—
processAllltems, sum, average, counting, linearSearching, findBestIn-
Collection, and filterACollection—were found in at least 9 of the 12
classes. Again, some of these are not surprising since computing
totals and averages and counting things are common novice tasks,
but we found it surprising that filterACollection was so prevalent
given that it was not included in previous inventories of elementary
patterns.

In the table, we’ve organized the courses by language of instruc-
tion as a way of visualizing whether there is a significant language
dependence in which patterns are taught. We don’t see evidence of
a significant language dependence, with two exceptions. First, as
previously noted, the digitProcessing pattern is taught in Java/C++
where loops are typically taught before arrays, but not in Python
where lists are often introduced before loops. Second, the object pat-
terns were only observed in Java; this result is consistent with Java
courses being more likely to emphasize object-orientation concepts
than the other languages in this study.
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Figure 1: The fraction of assessments in a given course that
include each pattern averaged across all courses with 95%
confidence interval. The patterns are sorted in descending
order.

5.1 Relative Pattern Frequency

Figure 1 shows the average fraction of assessments in which a
particular pattern was observed. On the x-axis we list the patterns
from most frequently occurring to least frequently occurring. The
y-axis denotes the average fraction of assessments in a class that
include that pattern; recall that we’re treating each homework and
exam, which might consist of multiple code writing activities, as
a single assessment in our data. We computed for each course the
fraction of its assessments that included a given pattern and then
averaged these over all of the classes. 95% confidence intervals were
computed using a bootstrap with 200 samples.

For the most part, we find these results to make sense. It isn’t
surprising for the two conditional patterns to be among the top
three along with Process All Items, as it can be difficult to write
non-trivial programs that don’t include these patterns. In contrast,
patterns like swapping, reverse, and digitProcessing are more gim-
micky patterns that are often employed for pedagogical reasons
orthogonal to their actual usage frequency in code.

We think the most surprising results are that the counting and
filterACollection patterns are among the most common, even more
common than linearSearching, sum, and findBestInCollection. Again,
the filterACollection pattern was not included in previous elemen-
tary pattern inventories. We would have expected linearSearching,
sum, and findBestInCollection to be more frequent than they were
relative to the other patterns.

5.2 Order of Pattern Appearance

Figure 2 plots the point in the progression of assessments in each
course where each pattern first occurs. We present this data to see
empirically what it suggests about the order that these patterns
should be introduced.



Table 3: The courses typically covered different subsets of the patterns. Columns represent the classes we examined (grouped
by language) and rows indicate the patterns that appeared at least once in the course’s assessments.

Python Java C++ C
Class A | ClassB | ClassC | ClassH | ClassI || ClassD | ClassE | ClassF | Class] | ClassL || Class G | Class K
booleanOperatorChaining || X X X X X X X X X X X
multiWayBranching X X X X X X X X X X X X
swapping X X X
digitProcessing X X X
processAllltems X X X X X X X X X X
sum X X X X X X X X X
average X X X X X X X X X
counting X X X X X X X X X X X
reverse X X
loopAndHalf X X X X X
linearSearching X X X X X X X X X X
findBestInCollection X X X X X X X X X X
filterACollection X X X X X X X X X
privateInstanceVars X X X
publicGetSet X X X
findBestInCollection 4 ® o °® ® X ® ®
linearSearching 4 L] [ e X ° ®
loopAndHalf 4 X-® L ®
filterACollection ® (X X ] X °® ®
counting ® 9o @ ® X ) ° °®
average - ®® ® X ° e
sum - ® ® @ X ° °®
swapping 1 ° X °
processAllltems ° (R @ @ X ® e X Average
® ClassA
digitProcessing e X ® Class B
® ClassC
privatelnstanceVars 4 X-® ® ® ClassD
e ClassE
multiWayBranching - L] -0 ® ® ® ® ® e ClassF
Class G
publicGetSet q ® ® ® ClassH
Class |
P Class |
booleanOperatorChaining ® ® @ ® ® L .4 ] e Class K
reverse 4 @ X ® ClassL
ofo 012 014 016 018 1T0

Progression through course assessments

Figure 2: The order in which patterns appear for the first time in each course. The times (x-axis) plotted assuming that the
assessments in the course are uniformly distributed throughout the term. The patterns are sorted (from bottom to top, y-axis)
by the average point in the term when they were introduced among the classes in which they were observed.

To plot this data, we found the first assessment in each course
where a given pattern appeared. We then needed to determine the
position in the term at which that assessment occurred. Since we
didn’t have that information from the instructors that provided
their instructor solutions, we made a simplifying assumption. We
assumed that the assessments were equally spaced throughout

the term. Thus, if there are 36 total assessments in a course and
a particular pattern shows up in assessment number 12, then we
would indicate that that pattern occurred (12/36) or 33% through
the term.

The fact that we had both quarter-length courses (including
one CS 2) and semester-length courses further complicates this



analysis. Again, we made a simplifying assumption, which was
that 1st quarter classes ran during the first half of semester length
courses and that 2nd quarter classes ran during the second half of
semester length courses. Obviously this is a gross approximation,
but we found these results to be pretty insensitive to the particular
assumptions that we made.

Overall, we find most of the results to be not surprising, at least
in hindsight. First, the two branch patterns are among the earliest
occurring patterns. In addition, the two object patterns occur early
in the term for the courses that teach them. The digitProcessing
pattern generally occurs before the other loop patterns, as it is being
used as an application of loops before arrays are taught; recall that
Class L is the second quarter course that somewhat artificially pulls
this pattern later in the term on average. The reverse pattern also
occurs early in the classes in which it occurs, which is consistent
with it being used shortly after both loops and strings have been
introduced.

The later patterns are dominated by the loop patterns, and in
general the more sophisticated patterns are later. We see sum, aver-
age, and counting occur before filterACollection, loopAndHalf, lin-
earSearching, and findBestInCollection. Perhaps most surprising is
the apparent lack of agreement of when these later patterns should
be introduced, as some of them range from being used in the first
30% of the term in some courses to being first used in the last 30%
of the term in other courses.

6 THREATS TO VALIDITY

By far the largest threat to validity of this work is in how the
courses studied were selected. Our selection was not particularly
well controlled. The courses came from two sources: 1) faculty that
the authors had a relationship with that we contacted directly, and
2) respondents from a request on the SIGCSE-members mailing
list. While these courses had a significant diversity in a number of
dimensions, there is no reason to believe that this small sample is
necessarily representative of all of the courses taught even just in
North America.

Additionally, since there is not yet a consensus about what the
important introductory patterns are, our analysis might have missed
some important patterns. While we did our best to remain observant
throughout the process to note any recurring idioms, what is an
introductory pattern is likely very much in the “eye of the beholder”.
The bulk of the patterns studied, however, are found in previous
literature, which suggests that there would be significant overlap
with an independent investigation.

7 CONCLUSION

Learning idiomatic chunks of programming language syntax, what
we refer to in this paper as patterns, enables novice programmers
to work at a higher level of abstraction and, thus, have lower cog-
nitive load when doing novel problem solving. As such, we believe
strongly that these patterns should be explicitly taught to our stu-
dents.

In this paper, we explore to what degree we can identify what
patterns should be taught in early programming courses and in
what order. We find that there is significant agreement among the
courses we studied about which patterns should be learned, and

that most of this consensus is language independent. In contrast,
while we find meaning in observed average order that patterns are
introduced, there is high variance between courses when students
are responsible for demonstrating having learned these patterns. As
such, we feel that identifying best practices around how to sequence
patterns in pattern-oriented instruction remains an important open
research area.
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