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ABSTRACT

The ability to reason with formal logic is a foundational
skill for computer scientists and computer engineers that
scaffolds the abilities to design, debug, and optimize. By
interviewing students about their understanding of proposi-
tional logic and their ability to translate from English spec-
ifications to Boolean expressions, we characterized common
misconceptions and novice problem-solving processes of stu-
dents who had recently completed a digital logic design class.
We present these results and discuss their implications for
instruction and the development of pedagogical assessment
tools known as concept inventories.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education — Computer science education;
F4.1 [Mathematical Logic and Formal Languages]:
Mathematical logic; B.6 [Logic Design]

General Terms

Human Factors, Languages, Verification

Keywords

discrete math, digital logic, formal logic, misconceptions,
concept inventory

1. INTRODUCTION

Practicing computer scientists and engineers require the
ability to reason rigorously. When they design software and
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hardware systems, propositional logic and Boolean algebra
(hereafter “Boolean logic”) play a fundamental role in writ-
ing specifications, validating designs, testing rigorously, and
optimizing safely. These skills are typically taught early in
computer science and computer engineering curricula (typi-
cally as part of discrete mathematics or digital logic design
classes) and serve as foundations for many of the classes that
follow.

These topics, however, are challenging for many students.
This paper focuses on one particular skill related to propo-
sitional and Boolean logic — the ability to translate natu-
ral language (e.g., English) specifications to Boolean expres-
sions — that was identified by experts in teaching discrete
math and digital logic design classes as a topic that is both
important and difficult for students to learn [12].

The goal of this paper is to understand the ways in which
students fail to translate accurately from English to Boolean
expressions, in terms of both conceptual misunderstandings
and failures in the problem solving processes used by the
students.

This work is part of an ongoing project to develop concept
inventories (Cls), multiple-choice tests that reliably mea-
sure student conceptual understanding; knowledge of stu-
dent misconceptions is necessary for writing compelling in-
correct answers (distractors) for a CI. Based on the impact of
the Force Concept Inventory (FCI) in physics education [10,
13], we believe that well-designed Cls can facilitate the de-
velopment of better pedagogical approaches (by providing a
mechanism for rigorous comparison) as well as for driving
their adoption, a view shared by others in computer science
education [1, 6, 16].

We believe, however, our results can also be used directly
by instructors of discrete mathematics and digital logic de-
sign classes to inform interventions that address these mis-
conceptions and inferior problem solving approaches.

We undertook this research using a traditional qualitative
approach, the motivation for which we describe in Section 2.
We transcribed and had the four authors independently code
a collection of interviews in which students were asked to
verbalize their thought process while solving Boolean word
problems; our methodology is described in Section 3. From



our coding, we identified nine themes relating to the mis-
takes that students made and the processes that the students
used that led to these mistakes, described in Section 4. In
Section 5, we discuss how these results relate to miscon-
ceptions identified in other disciplines before concluding, in
Section 6, with our ideas for how these findings should be
used to modify classroom instruction.

2. BACKGROUND

It has previously been shown that the average college stu-
dent does not reason with formal logic well. For example,
Cheng and Holyoak [4] found that fewer than 10% of col-
lege students reason correctly about the conditional logic
statement “if A then B.” Most of these students mistrans-
lated the conditional to be A AND B, instead of the correct
formal logic statement of B OR NOT A [4]. While their
study shows that average college students struggle with for-
mal logic, it does not show whether formal instruction in
propositional logic, such as that found in discrete mathemat-
ics and digital logic classes, dispels these misconceptions.

Physics education researchers have found that identifying
misconceptions alone is not enough to direct instructional
reform. In addition, instructors must know why students
(commonly referred to as physics novices) make the mistakes
they do. Previous research has shown that physics novices
think about physics in fundamentally different ways from
physics experts [2]. One difference is that physics novices
focus on surface features of problems rather than the un-
derlying concepts and try to recall as quickly as possible
any formula that seems to match the surface features of the
problem they have encountered [5]. For example, physics
novices focus on the physical objects in a physics problem
(e.g., inclined planes, blocks, balls), and then they try to re-
call any formulas that match the variables and objects of the
problem. However, physics experts focus on the principles
that can be used (e.g., conservation of energy, work) and
then use these principles to guide their search for strategies
and formulas [2].

In our investigations of student misconceptions in Bool-
ean logic, we seek to describe both the what and the why of
their misconceptions. Because there have been few previous
studies of these misconceptions, we took a grounded theory
approach. Grounded theory is a qualitative research method
that can be used when little is known about what people
do and how they think in a given context. In grounded
theory, no theory or hypothesis should be formed prior to
the collection of data [11]. Instead, theories should emerge
from the use of open-ended data collection, and the anal-
ysis of this data should inform future data collection [17].
One such data collection method is asking subjects to think
aloud about what they are doing within a familiar context [9,
18]. The data should then be analyzed with rigorous coding
schemes that protect against bias and the premature forma-
tion of conclusions. Rigor in coding schemes is enhanced
by requiring that multiple researchers independently code
the data; they then discuss their encodings and emergent
themes and retain only those codes and themes where unan-
imous agreement exists [17].

3. METHODOLOGY

Subjects in this study were interviewed for one hour about
their understanding of a wide range of concepts in digital

logic design. Due to time constraints, each participant was
interviewed on only a portion of the selected concepts. The
interview questions resembled problems that the subjects
may have encountered previously in a digital logic class.
Subjects were paid for their participation.

3.1 Subjects

In Spring 2008, seven undergraduate volunteers from the
University of Illinois at Urbana-Champaign were interviewed
about translating English specifications to Boolean expres-
sions. Two women and five men were interviewed; two were
international students. All volunteers were traditional age
(18-22) undergraduates majoring in computer science, elec-
trical engineering, or computer engineering who had com-
pleted a three credit digital logic design class with a simula-
tion lab in the Fall 2007 semester and had earned grades of B
or C. Students who had earned B and C grades were selected
because their understanding was likely to be less complete,
and they were more likely to have misconceptions than stu-
dents who had earned A grades. Our pilot interviews con-
firmed these expectations, as the interviews with students
who had earned grades of A had yielded fewer mistakes or
misconceptions. All subjects had also completed a discrete
mathematics class in a previous semester. Due to their rela-
tive lack of experience, these subjects were considered to be
domain content novices. In addition, two graduate teaching
assistants who have taught a digital logic class for several
semesters were interviewed. The teaching assistants were
considered to be domain content experts.

3.2 Interview Process

Interviews were conducted in a “think-aloud” format: sub-
jects were instructed to vocalize their thoughts as they solved
problems and responded to questions [9]. Prior to the inter-
view, subjects were briefed on the study’s goal of under-
standing how they think through various topics in digital
logic design. They were told to not expect feedback about
whether their answers were correct during the interviews,
but to expect being frequently asked to expand on what
they were doing [9]. All interviews were recorded using a
document camera (which recorded what the subject wrote)
and microphone. The audio tracks of the interview record-
ings were transcribed verbatim, the subjects’ gestures were
included in the transcript, and every piece of paper the sub-
ject wrote on was scanned electronically.

3.3 Interview Questions

As part of the interview, all subjects were asked the three
questions about Boolean word problems in Figure 1. Ques-
tions 2 and 3 were sometimes asked in the opposite order
to reduce the impact that answering one question may have
had on answering the other question. Question 1 was de-
signed to probe the students’ conceptual understanding of
if-then, while Questions 2 and 3 were designed to simulate
questions the students may have encountered in their digi-
tal logic design class. A list of acceptable answers to these
questions is in Figure 2. Additional clarifying questions were
asked in response to what subjects said.

3.4 Data Analysis

The interviews were analyzed using the following steps of
grounded theory and qualitative data analysis as described
by Kvale [15], Strauss and Corbin [17], and Miles and Hu-



Question (1) Explain the meaning of if 4 then B in Boolean logic. Give an example that demonstrates your understanding.

Question (2) A campus sandwich shop has the following rules for making a good sandwich:

(1) A sandwich must have at least one type of meat,

(2) A sandwich must have roast beef or ham, but not both,

(3) If a sandwich has turkey then it must also have cheese.

Write a Boolean expression for the allowed combinations of sandwich ingredients using the following variables:
¢ = cheese

h =ham
r = roast beef
t = turkey

Question (3) A recipe for apple pie has the following instructions:
(1) Do not use both allspice and nutmeg simultaneously; and
(2) Use nutmeg if and only if you use cinnamon.

Write a Boolean expression for the allowed combinations of spices for the apple pie, using the following variables:
a =1 if allspice is used

¢ =1 if cinnamon is used

n =1 if nutmeg is used

Figure 1: List of interview questions.

Question (1) At minimum the subject should be able to correctly translate if 4 then B to the Boolean expression A + B.
Identifying the conditional as implication was also expected.

An example that a student might give to demonstrate a deeper understanding of if 4 then B would be, “If a greeting card is
blue (A), then it must be a birthday card (B).” This statement is falsified only when the card is blue, but is not a birthday

card (AE = (Z + B)). A blue birthday card (AB) would be acceptable; a red birthday card (ZB) would be
acceptable; and a white wedding card (AB) would be acceptable.

Questions (2) & (3) approach: It was expected that the subjects would solve the written Boolean word problems by first
translating each rule of the problem statement into a Boolean expression independently. They would then compose the
separate expressions into a single expression by ANDing the rules together.

Question (2) solution

rulel=r+h+t; rule2=rh+rh=r XOR h; rule3=7f+c;
Final rule =(r + i + 1) - (rh + rh) - (t + ¢) = Simplified rule = (rh + rh)* (¢ + ¢)
Although not required, this rule can be simplified by recognizing that rule 2 subsumes rule 1.

Question (3) solution

rule 1= (an) = a NAND n; rule2= (nc + nc) = n XNOR ¢;

Final rule = (an) * (nc + Zc_’)

Figure 2: List of acceptable answers.




Action Prefixes

Prefix Definition (Codes with this prefix pertain to...)

Behavior

Behaviors of interest that are not used to derive a solution

Process

Strategies and processes that subjects use to derive a solution

Conception Prefixes

Code The relationship between programming and Boolean logic
Composition Conceptions used to create a single expression from multiple expressions
Correct Correct conceptions
iff Conceptions related to if-and-only-if
if-then Conceptions related to if-then
Mistranslation Conceptions that lead to mistranslations between English logic and Boolean logic
Translation Conceptions that lead to correct translations between English logic and Boolean logic

Table 1: Code Prefixes

berman [14]. The four authors analyzed the data: the in-
terviewer (Herman), a former instructor of a digital logic
class (Loui), a colleague with content knowledge in Boolean
logic (Zilles), and a researcher with extensive experience in
qualitative research methods (Kaczmarczyk).

Step (1) - To avoid bias, all seven interviews were ana-
lyzed. While the interviews included questions on other top-
ics, only the subjects’ responses to the Boolean word prob-
lems were analyzed, because this study focused on novice
Boolean logic misconceptions.

Step (2) - All researchers analyzed the interviews inde-
pendently without a predetermined coding scheme, as pre-
scribed by grounded theory [17]. Principles of grounded the-
ory were used to uncover the subjects’ misconceptions, be-
cause it allows the misconceptions to emerge from the data
without an a priori theoretical framework that would influ-
ence the observations. Eschewing an initial coding scheme
also allows for fuller descriptions of what the subjects did
correctly or incorrectly for each statement.

Step (3) - The four researchers met and discussed every
annotation and observation that they had made. To ensure
the accuracy and completeness of our coding, a unanimous
decision was needed for an annotation to be included for
coding or rejected from coding. If a unanimous decision was
reached, then it was counted as an agreement; otherwise it
was counted as a disagreement. Preliminary code names and
definitions were created for every accepted annotation.

Step (4) - After all interviews were discussed, the prelim-
inary code names and definitions were refined by two re-
searchers(Herman and Kaczmarczyk) to facilitate the iden-
tification of thematic patterns. The refined list of codes
and definitions was given to all four researchers to identify
the thematic elements of the codes independently. All re-
searchers then met again to discuss the thematic elements
that they had noted. A unanimous decision about the pres-
ence of a theme was needed for it to be included in the final
list of themes.

3.5 Codes

Through the process described in Section 3.4, 58 codes
emerged; a complete list of the codes can be found at the
end of this paper as Figures 4 and 5. The codes are divided
into two primary categories — Actions and Conceptions —
and annotated with a collection of nine prefixes (shown in
Table 3.1). The prefixes are used to help categorize the
codes and identify themes. Some codes have multiple pre-
fixes (e.g., Composition - Correct - AND (C9)) because both
prefixes accurately described the code. One code has no pre-

fix (Improper distribution (C34)), because it did not fit into
any of the more populous categories of code.
An inter-rater reliability of 95% was calculated as follows:

R = An/(An + Dy), (1)

where R is inter-rater reliability, A, is the total number of
agreements, and D,, is the total number of disagreements.

The conception codes are of most direct interest to this re-
search, because they indicate the misconceptions that can be
used to create the concept inventory. These codes also help
to gauge the relative difficulty of different concepts. While
the Behavior and Process codes will not be used to create
the concept inventory directly, these codes offer additional
insights about why the subjects had these misconceptions.
Therefore, they provide guidance towards instructional in-
terventions to help students overcome their misconceptions.
These codes also demonstrate the expertise level of the sub-
jects.

4. THEMES

The data analysis revealed five themes about student mis-
conceptions and four themes about their actions. The mis-
conception themes were (1) a tendency to reduce harder con-
cepts to easier concepts, (2) if-then translation misconcep-
tions, (3) confusion about the meaning of a false antecedent,
(4) omission of complemented variables, and (5) misconcep-
tions stemming from interference from exposure to a concept
in multiple contexts. The action themes centered on novice
behaviors and processes such as (1) reliance on recall over
reasoning, (2) proof by incomplete enumeration, (3) non-
systematic approaches to problem solving, and (4) a lack of
metacognition.

4.1 Reduction to Easier Concepts

The coding process revealed that there are two classes of
Boolean operators. One class of operators, the easy class,
includes OR, AND, and XOR. Subjects could correctly per-
form activities involving these operators in almost all in-
stances. The other class of operators includes NAND, if-
then, and if-and-only-if. Subjects showed incomplete un-
derstanding of the latter operators, and subjects tended to
incorrectly reduce these harder operators to the easier op-
erators. To facilitate discussion on these operators a set of
truth tables for these concepts is given in Figure 3.

4.1.1 AND, OR, and XOR - easy operators

The data showed that OR, AND, and XOR are easier op-
erators, because there are a large number of codes that deal



easy operators

AND | if Athen B | if-and-only-if

inputs
A B | NAND | XOR | OR
0 0 1 0 0
0 1 1 1 1
1 (1] 1 1 1
1 1 0 0 1
_—

0 1 1
0 1 0

0 0 0
1 1 1

Figure 3: Truth tables of the NAND, XOR, OR, AND, If-then, and if-and-only-if concepts. The two loops
show the similarities between the hard operators and the easy operators.

with the subjects’ ability to correctly translate and manip-
ulate expressions involving OR (C18, C19, C52), AND (C9,
C13, C51, C53), and XOR (C20, C58). Notably, all sub-
jects demonstrated more than one of these correct concep-
tions. This finding is in contrast to the paucity of codes
related to incorrect handling of these operators. Some sub-
jects made minor mistakes with these operators, but these
mistakes were often isolated to a single subject and may
have been caused by one of the other themes described later
(Sections 4.5 and 4.8). For example, only one subject mis-
translated “A or B, but not both,” as OR. This mistransla-
tion might be explained by the interference theme, because
in colloquial English “or” often means exclusive-or. All other
subjects were able to translate the previous statement cor-
rectly and were also able to express the XOR operation us-
ing the standard Boolean operations of AND, OR, and NOT
when asked.

The following excerpt shows how a subject correctly trans-
lates and explains Question 2 Rule 2 (see Figure 1) with a
full case enumeration:

STUDENT 7: There is also statement 2 which
says that a sandwich must have roast beef or
ham, but not both at the same time. So, that
would be » XOR h. And ... that really sums
up that whole statement right there.

INTERVIEWER: Can you expand your symbol
for XOR?

STUDENT 7: Yeah, basically that would mean
that » AND h is false [writes !(r AND h)] and
also that it would be NOT(NOT » AND NOT
h). If that makes any sense, because that would
mean that r is zero and h is zero and that does
not fulfill the XOR. condition, and neither does
having both of them be 1. So, basically [XOR
is] (NOT r AND i) OR (r AND NOT h).

Furthermore, no subject mistranslated the phrase “at least
one” from Question 2 Rule 1 (see Figure 1), and many demon-
strated a deeper understanding of why OR is the correct
translation.

STUDENT 7: [Rule] (1) is basically “must have
one type of meat,” so h OR r OR ¢t.

INTERVIEWER: And how did you decide that?

STUDENT 7: Well, OR is fulfilled anytime any
variable included in this expression has a value
of 1, so the only way that this wouldn’t... it only
needs one type of meat, so any of these could be
so that would fulfill that requirement.

4.1.2 Not both (NAND) reduction

Several subjects incorrectly reduced the NAND operator
to XOR (C36). The phrase “do not use both allspice and
nutmeg simultaneously” from Question 3 Rule 1 was mis-
translated by more than half of the subjects to be allspice
XOR nutmeg.

STUDENT 7: ... so do not use both [allspice]
and [nutmeg] simultaneously means that you use
XOR, because XOR means that only one can
happen. So, [writes @ XOR n]. So, for this part
it is just a XOR n.

It is possible that subjects mistranslate “not both” because
they see the phrase “not both” in NAND and XOR specifica-
tions and are overeager to match the “not both” phrase with
the XOR. Because XOR and NAND have the same values
for three cases ({a,n) = (1,1), (1,0), and (0,1)) the over-
aggressive pattern matching is reinforced as subjects match
these cases to the easy operator, XOR (This pattern match
can be seen with the left loop of Figure 3). The following
subject checks only three cases before concluding that he has
verified his use of XOR, (the explication of cases is added in
italics for clarity).

INTERVIEWER: So how’d you come up with ac
OR ac for “do not use both?”

STUDENT 2: Well, when we do not have all-
spice, I mean it says do not use allspice and nut-
meg simultaneously ({a,c) = (1,1)), right?
INTERVIEWER: Okay.

STUDENT 2: So if allspice is not being used, we
can use cinnamon ({(a,c) =(0,1)). And if allspice
is used, then we cannot use cinnamon ((a,c) =
(1,0)).
One student seemed to even struggle with what “not both”
meant.

STUDENT 1: “Do not use both allspice and nut-
meg simultaneously” would be the same thing as
saying “use allspice if and only if you are using
nutmeg, which is the XOR, so ac OR ca.

4.1.3 if-and-only-if (XNOR) reduction

No subject was able to correctly translate the bicondi-
tional statement “A if and only if B.” Most subjects reduced
the biconditional statement into only one of its constituent
single-direction conditional statements “If A then B” or “If
B then A.” This loss of one direction was also typically ac-
companied by a further reduction of “A if and only if B” to
be “A AND B”. STUDENT 1 misinterprets “n if and only
if ¢” to be “if n then ¢” (italics are added for emphasis).



STUDENT 1: If-and-only-if would be, if ... if I
use cinnamon ... no ... if-and-only-if means, if
I use nutmeg, then there has to be cinnamon, but
there if doesn’t have to mean that .... If A is
nutmeg then there will be cinnamon, but if there
is cinnamon, then that does not necessarily mean
there is nutmeg.

Students 3, 6 and 7 mistranslated the biconditional as
AND, and explained their choice by reducing “n if only if ¢”
to “if ¢ then n.”

STUDENT 6: I'm trying to remember something
about if-and-only-if .... I’ll write ¢ first and see
what happens .... I guess ¢ AND n] .... 1
think it should be something like this. I know it
might be wrong, but there is something related
to if-and-only-if that I couldn’t remember . .. it’s
something related to using AND), because the
only way for nutmeg to occur is if you use cin-
namon first .... Because if I look to this thing
here [expression] if n is 0 [the expression] will be
0. The only way for this [rule 2] to happen is for
n to be 1 and ¢ to be 1 which means that you
use both.

STUDENT 3: So you only want cinnamon to be
used .... I mean nutmeg to be used if you have
cinnamon, so I think if you take ¢ AND n, the
only way for that to be equivalent to 1 is if we use
them ... so ... yeah .... Let’s see ... you only
want to use nutmeg if you use cinnamon. So if I
use cinnamon, so cinnamon would be 1, then the
use of nutmeg would determine the value of this
expression. And then if you don’t use cinnamon,
then it would automatically be 0, for the whole
thing.

STUDENT 7: I interpret [if-and-only-if] as cin-
namon has to be used in order for nutmeg to be
used, but not the other way around. So, ... 1
guess it’s probably [writes n AND (]

4.1.4  if-then reduction

Four subjects mistranslated implication as “A AND B,”
which causes implication to lose its directionality (C28).

STUDENT 5: If you have turkey, then you must
also have cheese [write +tc] so it’s turkey AND
cheese

STUDENT 2: [writes 3:] Okay, well if it has
turkey then it also has cheese. [writes (]

It is possible that the subjects translated “if-and-only-if”
and “if-then” to both be AND, because the subjects had first
reduced “if-and-only-if” to “if-then” and then, based on this
misconception, they further reduced “if-then” to AND.

4.2 If-then Misconceptions

Although all but one subject recognized the conditional
statement, “if A then B” to be implication, no subject was
able to correctly translate or interpret the statement. Most
students appeared to hold multiple misconceptions about

implication. These misconceptions stemmed from faulty re-
call, reduction to easy operators, incomplete case analysis,
and struggles with understanding the relationship between
the antecedent (A) and the consequent (B). Two subjects
attempted to remember the Boolean expression for impli-
cation and incorrectly recalled the expression B + A (C29)
instead of A+ B.

STUDENT 4: if A implies B then you get A OR
NOT B, so I can’t remember if that it’s exactly
what it is, but it’s something like A OR NOT
B.

As mentioned above, subjects had misconceptions result-
ing from reduction. Two of these subjects who initially mis-
translated implication to be “A AND B,” later used incom-
plete case analysis to derive the expression “AB + AB” after
realizing that B could be true by itself without violating
implication (C27); both students failed to include the AB
case. (Cases are added for clarity.)

STUDENT 3: And then [rule] 3... I guess would
just be like, turkey implies cheese, so let’s see . ..
turkey AND cheese ((t,c) = (1,1) ) because
OR... NOT turkey AND cheese ((t,c) =
(0,1) )7 I think, because this would be such true,
if it has turkey and cheese, but it doesn’t say
anywhere that cheese cannot be by itself. So this
can also be true. [writes tc + c].

Some subjects also had misconceptions resulting from faulty
understandings of what the false antecedent implied.

4.3 False Antecedent Confusion

All subjects demonstrated confusion about the relation-
ship between the antecedent and the consequent in a con-
ditional statement. The most common misconception was
that the antecedent is a prerequisite for the consequent to
be true (C6) or more specifically that the truth of the an-
tecedent causes the consequent to be true (C4) (emphasis
added in italics).

STUDENT 7: I would say, well, given two state-
ments that are each either true or false you could
arbitrarily call one A and the other B and the
only reason why B would be true would be if A is
true first. So, if A then B.

STUDENT 7: Well because t ... the implication
arrow says that t is a prerequisite for ¢ and so if
t is not true, then I mean the whole thing does
not work.

STUDENT b5: If A then B, I would say it’s like
a cause and effect type of relationship where if
whatever A is is true then that means that B is
automatically true.

A potentially related misconception is the belief that if
the antecedent is false, then the conditional is false (C30).

STUDENT 7 : ’m just trying to remember what
it was. Although I guess I could do a quick truth
table. [draws truth table] So ... whenever t is
not true then that means this [t — c] is also not
true.



STUDENT 3: You only want to use nutmeg if
you use cinnamon. So if I use cinnamon, so cin-
namon would be 1, then the use of nutmeg would
determine the value of this expression. And then
if you don’t use cinnamon, then it would auto-
matically be 0, for the whole thing.

The cause of this misconception likely stems from the am-
biguity of the language used during instruction to describe
the concept of implication.

4.4 Omission of Complemented Variables

Subjects demonstrated difficulties in using complemented
variables. When enumerating cases to evaluate, subjects fre-
quently failed to evaluate the case where all variables were
false. For example, only one subject evaluated the (A, B)
=(0,0) case for the if-then constructions, and one subject
evaluated the (a,n) =(0,0) case for the “not both” con-
struction. If more subjects had evaluated these (0,0) cases,
they may have found that their Boolean expressions did not
match the English specifications.

Subjects also had difficulties including complemented vari-
ables in their expressions when encountering the English
specifications “by itself” and “without” (e.g., a pie with all-
spice and cinnamon, but without nutmeg is written as “ac”
instead of “aci”). Subjects translated “allspice by itself” as
just a (e.g., f(a,c,n) = a) rather than a ANDed with the
complements of all other ingredients (e.g., f(a,c,n) = acn).
Similar mistakes were made for the phrase “without.” In the
following example, the subject incorrectly interprets cinna-
mon by itself as ¢ instead of cna and allspice by itself as a
instead of acn.

STUDENT 5: You can use cinnamon by itself
without the nutmeg, because that doesn’t break
rule (2) [writes 4] ... or you could just use all-
spice by itself [writes +a].

Another subject failed to include any complemented vari-
ables in her expression despite describing these complemented
variables with her English specifications.

STUDENT 3: so that you can use cinnamon
AND allspice ... OR cinnamon AND nut-
meg ... OR cinnamon [writes (¢) V (¢ An)V
(e A a)] ... because you can’t use allspice and
nutmeg at the same time, and you can’t use nut-
meg without using cinnamon, so I think you’re
already limited to these 3 options.

4.5 Ambiguity and Interference

Most subjects had previously encountered logical construc-
tions in multiple contexts where each context assigned a dif-
ferent concept to these constructions. These different con-
texts can cause the constructions to be ambiguous. Other
concepts are introduced in multiple contexts with different
notations causing interference. The subjects exhibited mis-
conceptions resulting from the ambiguity or interference of
their different exposures to the constructions.

The most ambiguous construction for the subjects was “if-
then.” On several occasions subjects specifically mentioned
that they knew that there is a difference between how “if-
then” is used in programming or colloquial English and how
“if-then” is used in Boolean logic. Despite this knowledge
many subjects were unable to articulate the difference be-
tween the contexts (C7).

INTERVIEWER: How would you describe the
phrase if A then B in Boolean logic?

STUDENT 4: In Boolean logic or in plain En-
glish?

INTERVIEWER: Imagine that you are teaching
them.

STUDENT 4: Uh ... If A then B would mean
that if the expression after the “if,” like if you
had “if X=1,” then some other expression such as
X++ or increment X then if X=1 then you would
do the statement after that, saying “okay that
is true.” That’s more of a programming state-
ment than it is the Boolean logic approach. The
[the digital logic design class] approach would be
something more like what it means to have “if-
then” is some sort of implication, where if you
have one then you have the other.

INTERVIEWER: Okay. So you mentioned this
isn’t C [the programming language]. So what’s
the difference between a C “if-then” and a Bool-
ean “if-then?”

STUDENT 3: In C, if you say if something,
then you will uh, do some sort of further work,
if the first condition is true you do some stuff.
Then you've got other stuff. If and then are
usually ... they’re related, but they’re not ...
reliant on each other. Like, they are in Boolean
... logic, I guess.

Interference between the different notations used for the
same concept was seen in the way that subjects used multi-
ple symbols to indicate the complement of a variable. Many
subjects used programming symbols such as ‘!’ to indicate
complementation rather than the more commonly used Bool-
ean symbols such as the over bar or apostrophe (C2).

STUDENT 3: I guess you just put each part to-
gether with an AND because you want each part
of it to be true on its own, and then .... I'm us-
ing lots of different symbols for NOT.

4.6 Recall Versus Reasoning

Subjects in the study exhibited novice behaviors through
their reliance on memorization, recall, and manipulation of
equations, rather than reliance on reasoning [2]. The code
Process - Rote Recall (C50) was the most frequent code
and was used three times as often as any other code, except
Process - Incomplete enumeration (C44). The subjects’ sig-
nificant reliance on recall also led to instances of faulty recall
(C42). Perhaps most striking about this behavior was that
some subjects readily admitted that they relied only upon
recall to succeed in the class.

While working through Question 2, one subject said,

STUDENT 6: ...I also think how I learned this
classes [sic] are wrong. Like the way I approach
this classes [sic] are like I just memorize all the
concepts and stuff before I go to class and I just
go in and can do all the tests. Yeah, that’s my
lowest grade so far, like a B+ and B ...so...and
for all the classes I forgot everything.



Other subjects relied heavily on recalling symbols and
equations. The following example, concerns translating “if
T then I” to a Boolean expression. While the right arrow is
a standard symbol for implication in propositional logic, it
doesn’t satisfy the question of expressing if-then as a Bool-
ean function.

INTERVIEWER: So, if this was a function of like
f(T,I). What would that equal?

STUDENT 7: it’s been a while, but [writes f (T, I)]...
I don’t quite remember what the notation for
that was honestly...

INTERVIEWER: Let’s try it in a different con-
text then maybe .. ..

STUDENT 7: Oh! [writes T — I

Similarly another subject incorrectly recalls a Boolean ex-
pression for “if A then B.”

STUDENT 4: ... it’s something like ... if A
implies B then you get A OR NOT B, so 1
can’t remember if that is exactly what it is, but
it’s something like A OR NOT B.

4.7 Proof by Incomplete Enumeration

The enumeration of cases to prove the correctness of a
logical expression (proof by exhaustion) is a foundational
law within Boolean logic, yet subjects often felt they had
proved equivalence after enumerating only one or two cases
(C44 was the second most common code). What we came
to refer to as “proof by incomplete enumeration” resulted in
two types of errors for the subjects: reduction errors and
faulty error correction.

As mentioned before, subjects tended to reduce hard con-
cepts to easier concepts. In Figure 3, it can be seen that
XOR and NAND are equivalent for three cases and that
AND, “if-then,” and, “if-and-only-if” are equivalent for two
cases. Subjects frequently enumerated only the cases where
the hard concept and the easy concept were equivalent, and
failed to enumerate the cases where the two concepts were
not equivalent. Examples of faulty proofs can be seen in
Section 4.1.2. Another subject checked only one test case
((t,c)=(1,0)) for Question 2 Rule 3 (see Figure 1) before
deciding his recalled expression was correct.

INTERVIEWER: How would you interpret [rule
3] by itself?

STUDENT 6 : I would just start with turkey ...
okay I think it is ¢ AND c.

INTERVIEWER: And why do you think that?

STUDENT 6: Because if it is 1 which means
you have turkey, and you have 0 cheese ((¢, c)=
(1,0)) this statement is 0 which is wrong, and we
want this statement to be 1 which means that we
want both t AND c.

Other subjects enumerated some cases which disproved
their original expression, but fell short of the complete enu-
meration and therefore still had an incorrect expression. The
following subject enumerated only two cases of Question 2
Rule 3 ((t,¢)=(1,1) and (0, 1)) to derive her expression, but
failed to consider the case where neither turkey nor cheese
((t,c)=(0,0)) were used, which was also permitted by the
rule.

STUDENT 3: And then [rule] 3 .... I guess
would just be like, turkey implies cheese, so let’s
see ... turkey AND cheese ({(t,c) = (1,1))
because... OR ... NOT turkey AND cheese
((t,c) = (0,1))? I think, because this would be
such true, if it has turkey AND cheese, but it
doesn’t say anywhere that cheese cannot be by
itself. So this can also be true. [writes tc + tc].

4.8 Cowboy Composition and Non-systematic

Approaches

The imperfect use of proof by exhaustion suggests that
subjects are non-systematic in their approaches to problem
solving. The theme of non-systematic approaches was sup-
ported by other codes as well, including Process - Reasoning
disconnect (C49), Process - Nonsystematic analysis (C45),
Composition - Cowboy (C11). The term “cowboy composi-
tion” was coined when subjects “shot from the hip” to sim-
plify the composition of two complex rules in their heads,
rather than write down the complete compound expression
and then use Boolean simplification.

Student 5 used cowboy composition to answer Question 3.
In this example, the subject ignored the individual rules she
had derived earlier and derived a single incorrect expression
by “stringing” different cases together.

STUDENT 5: 1 guess I can just start out by
stringing all the possibilities together. So you can
use nutmeg and cinnamon [writes nc| or you can
use cinnamon by itself without the nutmeg, be-
cause that doesn’t break rule (2) [writes +¢|. “Do
not use both allspice and nutmeg together,” so
that means you could use cinnamon and nutmeg
or cinnamon and allspice rather [writes +ca] or
you could just use allspice by itself [writes +a].

4.9 Lack of Metacognition

Finally, subjects exhibited novice behaviors by how they
rarely used metacognition (C1) to monitor their work [2].
During all of the interviews on Boolean word problems, only
four instances emerged where the subjects monitored the ac-
curacy of their work or strategies. In particular, after sub-
jects had derived Boolean expressions, they rarely returned
to the original English expressions to check the accuracy of
their results (C49).

5. DISCUSSION

The results of our research show that digital logic students
have some ability to reason using formal logic, yet still strug-
gle to use important underlying concepts such as proof by
exhaustion. For example, many students demonstrated con-
siderable aptitude with some of the “easy” translation tasks
and were able to recognize immediately that Rule 2 (XOR)
of Question 2 fully subsumes the conditions described in
Rule 1 (OR). Despite their facility with these simple rules,
these same students could not translate harder statements
like if-then and tended to rely on ad hoc reasoning schemes
rather than the foundational principles of formal logic. The
finding that students struggle to use underlying concepts is
consistent with the findings of physics educators discussed
in Section 2.



Novice physics students tend to focus on surface features
of a problem, and they attempt to recall relevant equations.
Similarly, novice digital logic students seem to focus on the
few easy cases that they can perceive directly from the ini-
tial word problem statement, and they recall the Boolean
expression that best matches these surface cases. Not sur-
prisingly, the first expression that they often recall is the
simplest expression they can remember rather than the cor-
rect expression.

Novice behavior can be clearly seen in how our subjects
analyzed the expressions “if A then B” and “not both A
and B.” The statement “if A then B” provides two readily
perceived cases to evaluate, (A, B) =(1,1) and (1,0). The
statement is clear that in the (1,1) case the expression is
true and that in the (1,0) case the expression is false, but
it doesn’t explicitly offer information about the (0,0) and
(0,1) cases. We hypothesize that the subjects in our study
aggressively pattern matched the two explicit cases to the
simplest expression they could recall — AND (see right loop
of Figure 3). Furthermore, it seemed that many subjects
considered the (0,0) and (0,1) cases to be unimportant be-
cause many subjects failed to address these cases at all in
their spoken reasoning.

A similar explanation can be provided for the mistransla-
tion of “not both A and B” to “A XOR B.” The case (A, B)
= (1,1) is false is the only case explicitly described by the
statement “not both.” If a subject used aggressive pattern
matching, this case analysis maps to only one easy concept —
XOR (see left loop of Figure 3). When asked to explain their
choice of XOR in this situation, these subjects used par-
tial case analysis of the explicit XOR cases ({4, B) = (1,1),
(0,1), and (1,0)). Unfortunately, checking these cases only
confirmed their previous overaggressive pattern match. It is
also important to note that in both cases the complemented
case (A, B) = (0,0) was omitted by the subjects.

Students could have avoided these mistakes by using ap-
propriate translation techniques. To check the correctness
of their translation of an English statement into a Boolean
expression, students should apply the principle of exhaustive
enumeration. Students were reluctant to check exhaustively,
however: they failed to use truth tables and Karnaugh maps,
which facilitate systematic checking of all cases, particularly
in cases when students needed them most (i.e., when they
were struggling). Exhaustive enumeration protects against
overaggressive pattern matching and the omission of the
complemented case. Further research should investigate why
students were so reluctant to rely on truth tables except in
the simplest cases.

We also found that student misconceptions arise when
they encounter a term that has different meanings in dif-
ferent contexts. This finding is consistent with the physics
education research as well [7]. As an example from physics,
the physical terms force and work are similar to the collo-
quial meanings of the English words force and work, yet are
different in very significant ways (i.e., in mechanics you do
no work by jumping up and down in one spot even though
you have worked very hard while jumping). This problem of
conflicting definitions of terms is similar to the problem we
observed of ambiguous terms and concepts such as “if-then”
and “by itself.”

In programming and often in English, the “if-then” con-
struction is used to create causal relationships: if a condition
is true, then do this action (or this action will occur) and if

the condition is false, then the action will not occur. The
confusion between the two uses of if-then became partic-
ularly clear when the students said things like “A happens
first,” “A causes B,” or “A is a pre-requisite for B” to describe
the logical if-then. When students provided their own ex-
amples of a logical if-then statement, they often took the
form of if “condition A is true”, then “do this action” or “this
action will occur.” From this conception of if-then, the case
of the false antecedent makes little logical sense. The logical
statement can be “expressed” as “if A is false, then B cannot
occur.” Students interpreted that either “B cannot occur” is
not expressible in Boolean logic (C5, C32) or that “B cannot
occur” should evaluate to false (C30).

The ambiguity of the term “by itself” arises from the in-
terference between an an action-oriented interpretation and
a logic interpretation. For example, if the student is think-
ing visually, “cheese by itself” is the variable ¢ with nothing
else connected to it (e.g., f(c,h,r,t) = c¢). If the student
is thinking about making a “cheese by itself” sandwich, it
is very odd to think about grabbing cheese and the com-
plements of the other ingredients from the refrigerator to
place them into the sandwich. The interpretation of “cheese
by itself” as f(c,h,r,t) = ch7t does not accord well with
common, everyday experience.

Because misconceptions about Boolean operators seem
common, we recommend that in the classroom, concepts
such as “if-then,” “if-and-only-if,” “by itself” and “not both”
(NAND) be explained carefully using well-crafted, concrete
examples that students can relate to intuitively. Instruction
should take into account the causes for the ambiguity of
these concepts, and students should be warned where con-
fusion might arise [3]. We also recommend that instructors
emphasize proper translation and composition techniques by
modeling the correct techniques and evaluating student per-
formance with these techniques on examinations and home-
work [8].

Our results may not be generalizable to all computer sci-
ence students because all interviewed students were tradi-
tional age engineering students from a single institution.
Because we found similar misconceptions for students who
had taken digital logic classes in two different departments,
however, we believe that the results have a degree of gen-
eralizability. Another limitation of this research was that
many of the students (especially the international students)
were inarticulate and vague when answering questions. More
themes and misconceptions might have been found, but some-
times the student’s poor command of spoken English ob-
scured the student’s reasoning.

6. CONCLUSION

The results of this study demonstrate that students who
passed digital logic classes with grades of B and C are unable
to solve basic conceptual problems even shortly after com-
pleting a digital logic class. This weakness has important
implications for the development of our concept inventory.
As we develop the concept inventory, we will include ques-
tions that probe students’ understanding of the concepts of
“if-then,” “if-and-only-if,” “by itself,” and “NAND.” In addi-
tion, we will investigate if there are other conceptual diffi-
culties that lead to overaggressive pattern matching or that
require students to use complete case analysis to derive the
correct solution.



Future student interviews will try to complete our under-
standing of the misconceptions found so far and attempt to
find out how robust and common these misconceptions are.
If students are explicitly asked to write the truth tables for
the phrases “not both” or “if A then B,” will they still trans-
late “not both” as XOR or “if A then B” as A AND B or will
they realize that their original translations were incorrect?
If some misconceptions can be corrected by explicit enumer-
ation of cases and others cannot be corrected, we can further
classify the types of misconceptions by their robustness. In
addition, these interviews will investigate whether students
struggle to translate other English specifications such as “un-
less,” “exactly one of,” or “for all” and whether students can
recognize a correct translation even if they cannot generate
the correct translation.

We believe that instruction in propositional logic should
emphasize modeling and assessing proper translation and
composition techniques. This emphasis must also be cou-
pled with instruction that specifically addresses the mis-
conceptions found in our research. To better inform our
decisions of what to model in the classroom, we will inter-
view more propositional logic experts so we can examine how
they translate English specifications to Boolean expressions.
Once developed, assessments such as the concept inventory
can also be used to ensure that new pedagogies actually ad-
dress student misconceptions. We plan to use the concept
inventory to rigorously compare the effectiveness of different
teaching methods.

In addition to these instructional recommendations, we
believe that emphasis on proper logical thinking and com-
plete enumeration of cases will help students in other com-
puter science learning goals such as learning to debug pro-
grams and circuits. If students struggle to properly check
that all cases satisfy the English specification they were
given in logic contexts, how can we expect them to think
logically through what test cases are relevant to debugging
a program? The ability to translate English specifications
into Boolean expressions with rigorous, systematic methods
will provide them with valuable analytical thinking skills
that can empower students for future learning in computer
science and engineering.
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Code

" Code name Code Definition
C1 Behavior — Metacognition Sl;l;{{ect shows evidence of monitoring what they are doing and checking their
work.
I Code - Generic overload Subject has been exposed to a topic in multiple contexts and is demonstrating
interference between the contexts
C3 Code - if-then — action Subject's example of B in an implication is an action and not a variable
Ca Code - if-then — causal Subject falsely believes that A being true causes B to be true in if-then
statements
Cs Code - if-then — impossible :lug‘tggrc; falsely believes that it is impossible to express if-then in Boolean
c6 Code - if-then - pre-requisite Subject falsely believes t.hat A being true is a prequisite for B being true in if-
then statements(sequencing)
Subject recognizes that the if-then construction has different meanings in
C7 Code - if-then overload different contexts for example Boolean vs. Programming and Boolean vs.
English
c8 Code - Pseudocode equivalence sllgggrc; falsely believes that any pseudocode can be expressed with Boolean
C9 Composition - Correct — AND Subject correctly composes multiple rules together with an AND
c1o Composition - Correct - Subsuming Subject correctly recognizes that a second rule or multiple rules fully subsume
rules a previous rule
C11 | Composition — Cowboy Subject fal.sely combines rules by using ad hoc composition schemes instead of
a systematic approach
C12 | Composition - OR Subject incorrectly composes multiple rules together with an OR
C13 | Correct - AND analysis Subject demonstrates a correct intuitive analysis of what AND means
C14 | Correct - Boolean Proof Subject correctly knqws that Boolean algebra can be used to prove equivalence
between two expressions
c15 | correct - Converse not true tSrEEJeCt correctly recognizes that the converse of a statement is not necessarily
C16 | Correct - Formal DeMorgans Subject uses a correct formal definition of DeMorgan's Law, but doesn't
demonstrate a deeper level of understanding
C17 | Correct - NAND analysis Subject demonstrates a correct intuitive analysis of what NAND means
C18 | Correct - OR analysis Subject demonstrates a correct intuitive analysis of what OR means
c19 | Correct - OR overload Subjept co.rrec.tly recognizes that the word OR construction has different
meanings in different contexts
C20 Correct - ”l."r.anslatlon - XOR Subject correctly decomposes A XOR B to A'B + AB'
decomposition
C21 | Correct - Truth table interpretation Subject is able to correctly evaluate a truth table into a Boolean expression
C22 | Disagreement Coders have come to a disagreement
C23 | iff - Mistranslation - AND Subject mistranslates A if and only if B as AB
C24 | iff - Mistranslation - XOR Subject mistranslates A if and only if B as XOR
C25 | iff - Mistranslation - unidirectional Subject mistranslates A if and only if B as implication in one direction
26 | iff violation Subject fails to recognize that a statement explicitly violates the condition of A
if and only if B. (C does not violate C if and only if N)
C27 | if-then - Mistranslation - A'B Subject mistranslates if A then B as AB + A'B
C28 | if-then - Mistranslation - AND Subject mistranslates if A then B as AB
C29 | if-then - Mistranslation - B' Subject mistranslates if A then Bas A + B'
30 | ifithen - false antecedent Subject falsely believes that a false antecedent in an if-then statement makes
the statement false
C31 | if-then — Correct - implication Subject correctly recognizes if-then as implication
. . Subject falsely believes that a false antecedent in an if-then statement makes
C32 | if-then - meaningless . . .
the statement meaningless (programming confusion?)
. Subject falsely analyzes the if A then B statement directionality as being from
€33 | if-then reversal B to A instead of from A to B
C34 | Improper distribution Subject is unable to perform the distribution operation correctly

Figure 4: List of Codes and Definitions.




C31 | if-then — Correct - implication Subject correctly recognizes if-then as implication
. . Subject falsely believes that a false antecedent in an if-then statement makes
C32 | if-then - meaningless . . .
the statement meaningless (programming confusion?)
. Subject falsely analyzes the if A then B statement directionality as being from
€33 | if-then reversal B to A instead of from A to B
C34 | Improper distribution Subject is unable to perform the distribution operation correctly
Subject incorrectly interprets a variable of value false as not being part of the
C35 | Mistranslation - False as nonexistent expression at all (e.g., "A by itself" translated as f(A,B,C) = A instead of =
AB'C")
C36 | Mistranslation - Not both Subject mistranslates the phrase "not both" as XOR instead of NAND
C37 | Mistranslation - Not both - iff Subject falsely reinterprets the phrase "not both" as "if and only if"
C38 | Mistranslation - XOR Subject mistranslates A OR B but not both as OR instead of XOR
C39 | Process - Boolean to English Subject tries to interpret a Boolean expression into an English statement
C40 | Process - Complete enumeration Subject analyzes their answer with a full enumeration of cases
C41 | Process - Expression Evaluation Subject can evaluate an expression correctly given a set of input values
C42 | Process - Faulty recall Subject recalls a formula incorrectly
C43 | Process - Ignores simplification Subject fails to see that an expression can be quickly and easily simplified
. Subject only enumerates an incomplete set of test cases and then decides that
C44 | Process - Incomplete enumeration : . .
the incomplete set of test cases proves that their expression is correct
C45 | Process - Nonsystematic analysis Subject reasons to an expression using a nonsystematic listing of cases
C46 | Process - Past experience SubJ.ect recognizes that one problem can be solved in the same manner as a
previous problem
C47 | Process - Reasoning Subject uses step-by-step reasoning to derive the answer
. . Subject can reason correctly about a Boolean expression and an English
C48 | Process - Reasoning connection . . . .
expression, and recognizes when the two expressions are not equivalent.
C49 | Process - Reasoning disconnect quject can reason co.rrectl.y about Boolean expressions but does not connect it
with the English specification
C50 | Process - Rote recall Subject tries to recall information rather than reason through the problem
C51 | Translation - And Subject recognizes that “and” in English is translated as AND in Boolean
C52 | Translation - At least one Subject correctly translates "at least one" as OR
C53 | Translation - but Subject correctly translates the word "but" as AND
C54 | Translation - by itself Subjects correctly translates the phrase "A by itself" as f(A,B) = AB'
C55 | Translation - NAND abstraction Subject cor'rectly recognizes the minterms of NAND and abstracts them from
the expression to the term NAND
C56 | Translation - nor Subject correctly translates the phrase "neither A nor B" as NOR
C57 | Translation - Not both Subject correctly translates "not both" as NAND
C58 | Translation - XOR Subject correctly translates A OR B but not both as XOR

Figure 5: List

of Codes and Definitions (continued).




