An Assembler for the MSSP Distiller

Eric Zimmerman
University of Illinois, Urbana-Champaign

Abstract

It is important to have a means of manually testing a potential optimization before laboring to
fully implement it in the MSSP distiller. To achieve this, we have written a tool to generate
disassembled output from a distilled program. This allows the compiler architect to test potential
enhancements by making changes at the assembly code level. The tool then reassembles the
modified code into the distiller’s intermediate representation. Finally, the rebuilt instruction
stream is run on the MSSP simulator where the optimized performance impact can be gauged.

Introduction

The MSSP distiller is an optimizing compiler that generates approximate code through profile-
guided transformations. Approximate code is run on a high-performance master processor in an
MSSP configuration [Zilles 2002]. Because the distiller operates on a program binary without
access to its source code, a program’s behavior must be determined empirically from the
execution profile before good optimizations can be made. While some optimizations like
efficient code layout have obvious performance benefits, the potential benefit of other
enhancements is not as clear.

After the distilled code is generated, it is difficult to modify. Instruction opcodes, register
references, and branch offsets are fixed and encoded in the 32-bit instruction words used by the
MSSP simulation infrastructure. We have written a tool to simplify the process of modifying
distilled code by allowing changes to be made at the assembly level. This will allow quicker
prototyping and evaluation of optimization strategies in the distiller.

Our MSSP simulation infrastructure implements the HP Alpha Instruction Set Architecture
(ISA). The Alpha is a 64-bit RISC architecture designed for high-speed implementations. The
instructions are very simple, with all memory operations in the form of loads and stores, and all
data manipulation done between registers [Witek, et al. 1998]. In many ways this tool is like a
typical assembler targeting an Alpha processor although there are some key distinctions. An
important property of MSSP programs is they exist in two versions: original and distilled.
Various mappings are required to compare distilled execution on the master processor to original
execution on the slaves; special care is required to preserve the mapping between these two
versions.

Assembly Format

The assembly format is similar to that of traditional Alpha assembly code. Several annotations
are added to the code to preserve the internal attributes of the distilled program. For example, to
represent the mapping between distilled program addresses and original program addresses, each
distilled block has the corresponding program counter (PC) of the original program as part of its
header label. It is also important to preserve information about which basic blocks serve as
speculative entries, function entries, path stubs, task boundaries, and verification checkpoints.

This information is written in the header label tag and the hexadecimal flag field of the block
header. A sample function listing is shown in Figure 1.

Figure 1. Example of assembly format
func_entry_0x120012ca0: (flags: 0x0)
entry_bl ock_0x120012ca0: (flags: 0x3)

fork_0x120012ca0: (flags: 0x40)
fork 0, veri fy_0x120012ca0

spec_entry 0x120012ca0: (flags: 0x808810)

I dq r27,16(r10)

| da r4,4108(r4)

cnpl t rd,ro,rl7

bne ri17, fork_0x120012ca0
bl ock_0x120012cdc: (flags: 0x26)

jsr r26, (r27)

Cal l ee: func_entry 0x120030e00
[}//”//////"Callee: func_entry 0x120031260
Cal l ee: func_entry_0x1200327b0
bl ock_0x120012cf4: (flags: 0x400000)
mast er _end
verify 0x120012ca0: (flags: 0x80)

verify

A. Block properties are represented in a 32-bit hexadecimal flag field.
Bl ock header nanes serve as a nore readable indicator of the block type
(e.g. entry_block). Al so, the address of this block in the original
programis included in the |abel.

B. The target of the fork instruction is the verify block below
Control flow references are resolved during the assenbly and code
| ayout steps.

C. Enpty blocks are skipped during code layout, so their block flags
are "pushed" to the next non-enpty bl ock. In this instance, the bl ock
appears to hold speculative entry code, when in fact the spec_entry
block is an enpty predecessor that has forwarded its block flags to a
normal bl ock. The user can add instructions to a speculative entry
bl ock by creating a block outside the control flow path. Fl ags nmust
set for speculative entry and the block nust be termnated with an
uncondi ti onal branch to the successor.

D. Indirect junps and calls are annotated with a list of potential
targets in order to restore control flow edges in the IR

Most instructions are disassembled using the nd_pri nt _i nsn function from the SimpleScalar
supporting library [Burger and Austin 1997]. Branch target offsets are replaced with their
corresponding block label, leaving the assembler to perform the work of recalculating instruction
offsets.

A special set of control instructions is the group of indirect jumps and calls. Since the target
offset is based on the contents of a register, the jump destination is not clear from the assembly
itself. Instead the distiller performs an analysis to generate a list of possible jump destinations.
During disassembly, we iterate through this list, placing each target block label on a line below
the indirect jump or call instruction.

Reading in Assembly

Once the desired changes are made to the disassembled code, the assembler must read in the file
and reconstruct the distiller’s internal representation (IR) of the modified trace. This procedure
is outlined in Figure 2.

Figure 2. Reconstructing IR from assembly file.
For each function in assenbly file:
For each basic bl ock in function:

Build a new block with correct flags

Add bl ock to parent function

Encode instructions for block according to machine
definition

I f needed, add a fall-through edge to succeedi ng bl ock

If last instruction has a control flow target, record
target label to be resolved | ater

Match control flow references with target bl ocks, adding CFG edges
For each function read in:
Perform code | ayout on internal representation

The Alpha instructions are defined and implemented in the MSSP simulator’s machine definition
files. In order to parse the disassembled instructions, we used this information to record each
instruction name, opcode, assembly format string, and input/output register set in a structure.
When reading in the assembly file, the scanner searches this structure for the current instruction
name. After locating the name, the assembler can find the format of the current instruction to
properly encode the input and output register and immediate parameters.

The last important role of the assembler is to order the basic blocks into the correct control flow
arrangement. Because the assembly code has each branch and function call offset replaced with
a string referencing its target, the assembler must provide a way to resolve each target label
reference to its block object in the internal representation. This is done by storing for each basic
block a <string, basic bl ock> pair that associates the target block’s text label with its
C++ class object. These pairs are stored in an STL map indexed by the target label string.

Each block that terminates with a control instruction also encodes a <string, basic
bl ock> pair associating the source block object with the text label of the target block. The
source block pairs are stored in an STL multimap since there can be multiple source edges to a
given target. Branch edges are resolved by iterating through the map of target blocks and adding

an edge for each source block in the source multimap that references that target. Call edges are
inserted in a similar manner.

Most basic blocks need a fall-through control flow edge to the succeeding block. Exceptions to
this include jump, tail call, mast er end, and veri fy instructions. Unconditional branches
are treated uniquely, since they are inserted only when the code layout routine cannot place the
fall-through block immediately after its predecessor. Upon encountering an unconditional
branch instruction, the assembler does not insert the instruction in the basic block, but rather adds
a control flow edge to its target. Inserting the branch instruction is left to the code layout phase.

After basic blocks have been created, instructions encoded, and control flow set, the code layout
phase can write the new distilled trace to memory. Finally, the MSSP simulator executes the
trace and reports the performance statistics. To demonstrate the integrity of the reconstructed
trace, we tested the code and were able to achieve equivalent results when tasks were not
modified.

Experimental Results

To illustrate a situation where the assembler is useful, we identified a candidate function
sub_penal from the SPEC CPU2000 twolf benchmark (Figure 3). This function has a loop
that takes the same inner branch on all but the first and last iteration. Because of the inner
branch’s unique structure, we were able to "peel" the initial branch above the loop and the final
branch below the loop by modifying the disassembled code of the distilled trace. To stay
consistent with the original code, we replicated the fork instruction at the head of each peeled
iteration. We took advantage of this peeled loop structure by inserting a check in the
spec_entry block to branch to the current iteration’s code. This avoids needlessly repeating
cycles of the loop when a task misspeculation occurs on the final branch, for example.

Another performance bottleneck we identified was that every iteration applied a pair of absolute
value operations. For each absolute value, the compiler inserted conditional branches to
determine the sign of the operand. Our profile data show these branches suffer frequent
mispredictions. We modified the disassembled loop to replace the absolute value computations
with conditional move instructions. Finally, we assembled these changes and tested them in the
simulator. In our test run of one hundred million instructions, Sub_penal accounted for only
4.3% of the dynamic function calls; however, the performance impact of these changes was a
1.4% speedup overall.

When used with good profile data, the assembler can be used to quickly evaluate the
effectiveness of a performance hypothesis. This will be useful as the distiller is extended to
handle more aggressive optimizations for approximate code.

Figure 3. C code listing of function sub_penal from SPEC CPU2000 twolf benchmark.

sub_penal (startx , endx , block , LoBin , H Bin)
int startx , endx , block , LoBin, H Bin ;

{

Bl NPTR bptr ;
int bin ;

if(LoBin == HBin) {
bptr = binptr[bl ock][LoBin] ;

newbi npenal -= ABS(bptr->nupenalty) ;

bptr->nupenalty -= endx - startx ;

newbi npenal += ABS(bptr->nupenalty) ;
} else {

for(bin = LoBin; bin <= HBin; bint+t) {

bptr = binptr[bl ock][bin]
if(bin == LoBin) {
newbi npenal -= ABS(bptr->nupenalty) ;
bptr->nupenalty -= bptr->right - startx ;
newbi npenal += ABS(bptr->nupenalty) ;
} elseif(bin==HBin) {
newbi npenal -= ABS(bptr->nupenalty) ;
bptr->nupenalty -= endx - bptr->left ;
newbi npenal += ABS(bptr->nupenalty) ;
} else {
newbi npenal -= ABS(bptr->nupenalty) ;
bptr->nupenalty -= bi nWdth ;
newbi npenal += ABS(bptr->nupenalty) ;
}
}
}
}
References

Burger, D. C. and T. M. Austin. "The SimpleScalar Tool Set, Version 2.0". Technical Report
CS-TR-97-1342, University of Wisconsin-Madison, June 1997.

Systems Performance Evaluation Corporation. SPEC benchmarks. http://www.spec.org.

Witek, Richard T. and Alpha Architecture Committee. Alpha Architecture Reference Manual.
3rd edition. Maynard: Digital Press, 1998.

Zilles, Craig. "Master/slave speculative parallelization and approximate code," Ph.D.
dissertation, Computer Sciences Department, University of Wisconsin—Madison, Aug.
2002.

