Formally Defining and Verifying Master /Slave
Speculative Parallelization™

Pierre Salverda, Grigore Rogu and Craig Zilles

University of Illinois at Urbana-Champaign
{salverda,grosu,zilles}@cs.uiuc.edu

Abstract. Master/Slave Speculative Parallelization (MSSP) is a new
execution paradigm that decouples the issues of performance and cor-
rectness in microprocessor design and implementation. MSSP uses a fast,
not necessarily correct, master processor to speculatively split a program
into tasks, which are executed independently and concurrently on slower,
but correct, slave processors. This work reports on the first steps in our
efforts to formally validate that overall correctness can be achieved in
MSSP despite a lack of correctness guarantees in its performance-critical
parts. We describe three levels of an abstract model for MSSP, each re-
fining the next and each preserving equivalence to a sequential machine.
Equivalence is established in terms of a jumping refinement, a notion we
introduce to describe equivalence at specific places of interest in the code.
We also report on experiences and insights gained from this exercise. In
particular, we show how formalizing MSSP facilitated a deeper under-
standing of performance-correctness decoupling and its attendant trade-
offs, all key features of the MSSP paradigm. Moreover, formalization
revealed all assumptions underpinning correctness, which, being spec-
ified abstractly, can be understood in an implementation-independent
way. We found these results so valuable that we plan to advance MSSP’s
formalization in parallel with its subsequent design iterations.

1 Introduction

Technology advances have reached the point where it is now possible to engineer
multiple processor cores onto a single chip. While this capability lends itself to
throughput-oriented workloads, latency-critical sequential applications do not
see any benefit. The traditional approach of relying on the programmer to find
and extract parallelism in such programs has met with little success, primarily
because manual parallelization is complicated and error-prone. Thus, a funda-
mental challenge facing computer architects today is bringing the benefits of
multiple cores to bear on the performance of sequential programs.
Master/Slave Speculative Parallelization (MSSP) [14] is a recent proposal for
automatically extracting parallelism from sequential programs. The paradigm
uses a master processor to divide the dynamic instruction stream into pieces,

* This work was supported in part by a grant from Intel and National Science Foun-
dation grants CCR-0311340 and CCF-0347260.



Correct

Source Smple binary Save Og'tagt
program compiler Input processor
data
Correct path

Program Master
distiller

| Runtime
|processor hints

Distilled
binary

Fig. 1. Conceptual organization of MSSP. On the fast path, the master executes
an approzimate program (distilled binary) to run ahead of the slaves, providing hints
(live-ins) of where execution is likely to be headed. On the slower correct path, the slave
processors use the hints to concurrently compute their tasks.

called tasks, which are executed in parallel on multiple slave processors. Dataflow
dependences between the tasks are resolved by the master, which predicts live-in
values for each task by executing an approximate version of the original program.
Slaves use the original program code when executing their tasks, but operate
on the speculative live-in data supplied to them by the master. The results
computed by slaves are committed to the machine’s non-speculative state only
if the corresponding live-ins are consistent with that state. If inconsistencies are
detected, the results are discarded and the machine resumes its operation using
the pristine non-speculative state as a starting point. Because slaves operate
concurrently, overall performance is determined largely by the master processor.
In turn, because the master executes an approximate (shorter) version of the
original program, MSSP is able to achieve significant speed-ups over speculative,
out-of-order superscalar machines [14].

The potential for high performance in MSSP is underpinned by its ability
to decouple performance and correctness concerns, in so doing facilitating the
simultaneous pursuit of these otherwise conflicting goals. Complezity lies at the
root of the tension between performance and correctness: pursuit of the former
incurs complexity (out-of-order superscalar architectures and optimizing code
transformations are complex), which, in turn, compromises our ability to ensure
the latter (complex systems are hard to verify). MSSP decouples the two by
separating the parts of the system that produce output — and are thereby
constrained to be correct — from the parts that determine the rate at which
output is produced. Figure 1 depicts this idea.

Decoupling in such a framework is successful if neither subsystem can com-
promise the objectives of the other. That is, the fast path should not compromise
correctness and the correct path should not determine overall performance. As
noted already, the latter property does indeed hold in MSSP because the master
processor resides on the critical path, not the slaves. The former requirement —
that of correctness in spite of the potential for errors on the fast path — is the
focus of this paper.



Thus, our primary goal here is to demonstrate that correctness in MSSP can-
not be influenced by how the master operates, nor by the instructions contained
in the distilled binary it executes. In so doing, we conclusively demonstrate that
the correct path is properly decoupled from the fast path. This provides a formal
basis for a central theme in our work: correctness need not be compromised by
the pursuit of performance.

The formalization of MSSP also served a secondary goal of obtaining an
abstract model for the new execution paradigm. In developing that model, we
have exposed the fundamental aspects of MSSP that underpin its correctness.
Specifically, we isolated the notion of task safety (Section 4) as the principal con-
dition upon which correct operation rests. That we could distill the correctness
requirement so precisely and succinctly was simultaneously surprising and en-
couraging. Indeed, the mere process of formalizing MSSP has been fundamental
to our gaining a deeper understanding of an execution paradigm we previously
understood only “intuitively.” The lack of implementation-specific detail in the
abstract model will also facilitate reasoning about correctness in subsequent it-
erations of the MSSP design, each of which is likely to be encumbered by the
artifacts of technology-driven design trade-offs. These benefits accrue because
we embarked on the formal study early on in our research, in contrast to much
formal work, which tends to be a “post-mortem” exercise whose sole goal is to
find errors in an extant design. In this respect, our experiences are in agreement
with previous assertions (see, for example, [5]) that formal verification should
be a part of the design process.

In terms of the formalization itself, we report on our use of rewriting logic [7],
as supported by Maude [3]. We establish correctness by proving MSSP’s equiv-
alence to a conventional sequential execution model. In this respect, our work is
similar to the extensive studies of microarchitecture verification, where correct-
ness is proven by comparing a microarchitectural specification to the specification
of an instruction set architecture (ISA). The work of Burch and Dill [2], Hunt
and Sawada [10,11] and Arvind and Shen [1] are notable examples in this area.
However, we differ from those studies in that we are not trying to establish that
a refinement — in the usual sense of the word — of an ISA is correct, since
MSSP is not a standard refinement of an ISA.

Although an MSSP machine implements a conventional sequential ISA, it dif-
fers from a sequential machine in terms of the granularity at which updates the
architected state! occur — MSSP updates state at task boundaries rather than
at instruction boundaries. Thus, a key property of MSSP is that it “jumps” over
sequences of states in the sequential model. In fact, if one ignores MSSP tran-
sitions that do not change architected state, then the sequential model can be
regarded as a stuttering refinement [6] of MSSP. But this is somewhat counterin-
tuitive because our objective is to reason about MSSP in terms of the sequential
model, not the other way round. To capture the desired relationship between

! By this we mean the ISA-visible state — the set of all registers and memory cells
accessible via the instruction set. Internal state, such as that held speculatively by
the master and all slave processors, is not included in this set.



MSSP and the sequential model, we define the notion of jumping refinement in
Section 3 and then show formally that MSSP is a jumping refinement of the
sequential model.

We tackled the formalization process iteratively, beginning with a high-level
abstract model in which we make a number of simplifying assumptions. Section 4
describes this work. Sections 5 and 6 show successive refinements of the abstract
model, identifying low-level requirements from which our initial assumptions can
be inferred. Throughout, we present only the most important and interesting re-
sults at an abstract, mathematical level, rather than our particular formalization
in Maude. Even though Maude provides a suite of useful tools for our project,
we would like to avoid giving the reader the impression that it was a crucial part
of our formalization. We believe that one can relatively easily adapt our work to
other formal systems and tools. Section 7 concludes the paper and summarizes
some of our main observations and lessons learned during this work.

2 An overview of MSSP

In this section, we present an overview of MSSP. This high-level description is
meant to provide the contextual knowledge necessary to understand the formal
work that follows in the remainder of the paper. A more extensive treatment of
MSSP can be found in [13] and [14].

2.1 High-level operation

Consider again Figure 1. An MSSP machine has two execution paths: the fast
path and the correct path. The fast path is composed of a single, complex master
processor that executes a speculatively optimized executable called the distilled
program. The master processor runs ahead of the correct path execution to pro-
duce hints of where the execution is headed. The correct path is implemented by
multiple slave processors, which lag behind the master. Because the individual
slave processors are slower than the master, we need a means for the correct
path to keep up. MSSP uses speculative parallelization [12] for this purpose. Ex-
ecution of the correct path program is split into segments, called tasks, that are
executed concurrently on the slaves.

To enable these tasks to execute independently and in parallel, the master
execution is used to predict the sequence of tasks — that is, the starting program
counter (PC) of each task, and the values that are live-in to each of them.
The predictions are generated by logically taking a checkpoint of the master’s
(speculative) state at the point corresponding to the beginning of the task.

Because the master’s predictions are not guaranteed to be correct, the re-
sults computed by slaves are themselves speculative, and must be checked be-
fore they can be made architecturally visible. To enable this, each task’s inputs
(live-ins) and outputs (live-outs) are recorded and sent to a verification/commit
unit. When a completed task becomes the oldest (i.e., the next to commit), a
memoization-like operation is performed that commits the outputs if the inputs
match the machine’s current architected state.



PO P1 P2 P3 Architected
State

Task A

Execute Task

Task B
()
Task C
£ c ~
= T
\ Verify
@ - T _ . Commit State
Ve-ins Spec. Stor;s — e
@ Verify
Squashed Commit State

IVeinsTspec stores — — — — — - @ Mi lati
ISspeculation

Detected
v

c

Fig. 2. Master processor distributes checkpoints to slaves. The master, execut-
ing the distilled program on processor PO, assigns tasks to slave processors, providing
them with predicted live-in values.

2.2 MSSP example

To facilitate a conceptual understanding of MSSP, we provide an example that
outlines its basic behavior. Figure 2 illustrates an MSSP execution with four
processors: one master (P0) and three slaves (P1, P2, and P3) that begin the
example idle. Each processor has its own register file and local first-level cache;
values held there are speculative. The machine’s architected state appears on
the right in the figure. This holds the current (correct) values of all ISA-visible
registers and memory addresses. In an MSSP machine, this is maintained in the
shared second-level cache, which is backed by DRAM.

At annotation (1) in the figure, the master processor spawns Task B onto
processor P2, which then begins executing (2). PO continues executing (3) the
distilled program segment that corresponds to Task B, which we refer to as
Task B’. As the slave executes Task B, it reads values that it did not write (the
live-in values supplied by the master) and performs writes of its own (the live-out
values). When Task B completes (4), P2 sends its live-in and live-out values to
a verify /commit unit, which checks that the live-ins exactly correspond to the
architected state; if so, the live-outs can be committed to architected state (5).
The commit is implemented so that it appears atomic to all processors in the
system [14]. This avoids potential problems with memory coherence if MSSP is
used in a multiprocessor system.

If the master generates an incorrect value (3), one of the recorded live-in
values will differ from the corresponding value in the architected state, and a
mismatch will be detected at verification (6). When this occurs, the master
and all other in-flight tasks are squashed — the speculative data they hold in
their registers and caches is discarded. The architected state of the machine is
not affected by the misspeculation, so it holds the state the program was in at
the completion of Task B. At this time, the master is restarted at C’ (7) and,



in parallel, non-speculative execution of the corresponding task in the original
program (Task C) begins on P2 (8). In both cases, the processors have their
state seeded with the correct values currently held in architected state.

3 Rewriting Logic, Jumping Refinements and Maude

We chose rewriting logic as the formal framework in which to define and reason
about MSSP. Rewriting logic (RL) has been introduced as a unifying framework
for concurrency [7], making it quite appealing for a complex and highly con-
current architecture like MSSP. As a tool supporting RL, we chose the Maude
system [3]. Maude provides a series of formal analysis tools for rewriting logic
theories, including: (1) a highly-efficient rewriting engine; (2) a search procedure
exploring the (potentially unbounded) state space using a breadth-first strategy;
(3) a linear temporal logic (LTL) model checker; and (4) an inductive theorem
prover and proof assistant (ITP) [4]. While our present work does not require all
of these features, the potential to expand without changing tools makes Maude
a compelling choice.

RL extends equational logic by adding rewriting rules as parameterized state
transitions. Briefly, a rewriting theory R is a triple (X, F, R), where X' contains
all the type and operator declarations, F contains a set of equations, and R is
a set of rewriting rules. Equations in F are used to define the computational
infrastructure of a system specification (such as predicates and sets of tasks,
in the case of MSSP), while the rewriting rules in R are used to specify the
concurrent aspects (such as committing a slave processor’s live-outs). Equations
and rules can contain variables, and they are applied to a given term at any
position where they match. Given R = (X, E, R), we let =g and =% denote the
binary relations on terms derived by applying the equations and the rewriting
rules, respectively; =% denotes the reflexive, transitive, and =g-closure (i.e.
modulo equations in E) of =%. The subscript R is omitted whenever apparent
from context.

Any transition system can be defined as a rewrite theory. In particular, both
the sequential model and the various versions of MSSP are rewrite theories,
each having a special state type (or sort); the rewrite sequences on state terms
correspond to state transitions. The standard notion of (stuttering) refinement
of rewrite theories states that a step in the abstract theory can be simulated
by a sequence of steps in the refined theory. We would clearly want MSSP to
refine the sequential model, but note that this is not true within the standard
meaning of (stuttering) refinement — and this has nothing to do with our choice
of using rewriting logic for our formal framework — because MSSP deliberately
does not reproduce all the steps of the sequential model. To formally capture
this relationship, we introduce the notion of jumping refinement, as follows.

Definition 1. Given R = (X, E,R) and R' = (X', E', R') with rewrite rela-
tions = and =R/, respectively, and containing some designated sorts State
and State, respectively, together with a map v associating terms of sort State to



terms of sort State’, we say R’ is a jumping y-refinement of R iff for any
transition t =g w in R’ there is a sequence Y(t) =% ¥ (u) of transitions in R.

The intuition here is that the states in R’ contain more information than
those in R, and ) is a projection extracting a state of R from a state of R’.
It may therefore be the case that several transitions take place in R’ without
changing the corresponding state in R. In other words, it may be the case that
t =g t' while ¥(t) =g ¥('), but it is also possible that ¥(t) =% (t) for a
large number of transitions in R. In the first case we metaphorically say that
the transition in R’ “accumulates energy” with respect to R, and in the second
that the transition in R’ “jumps” with respect to R. In our case, R’ will specify
MSSP, R the sequential model, and 1 will return the architected state of MSSP.
Note that the slave execution steps in MSSP do not modify the architected
state, so their execution “accumulates energy”; but once a slave computation is
committed, the MSSP machine “jumps” several sequential states.

4 First iteration

We next introduce abstract models for sequential and MSSP execution, and then
show that the latter is a jumping refinement of the former. Since the sequential
machine model under consideration is deterministic, its executions can safely be
considered atomic. This implies the rewrite rules (transitions) in the sequential
model can be regarded as equations, so we will often say, by slight abuse of
language, that MSSP is equivalent to the sequential model instead of a jumping
refinement of it.

The formalisms presented here are abstracted from our original Maude source,
which is harder to read but available online in complete form at [8]. The reader
is encouraged to refer to that source for a mechanical formalization, both of the
execution model specifications and of the proofs of the main results, the details
of which we must necessarily omit here.

4.1 The sequential execution model

The sequential execution model, which we denote by SEQ), serves as a reference
against which correctness of MSSP is measured. Since we do not wish to couple
ourselves to any particular sequential ISA, we avoid specifying one for SEQ. We
can afford to do so because we assume that the slaves implement the same ISA
as the “reference” sequential machine.

The SEQ model is centered on the notion of machine state. Although we have
defined machine state precisely in other work [9], the abstractions we present in
this paper are at a sufficiently high level for us to avoid having to impose a
structure on it. Thus, machine state is defined simply as the domain, denoted
by S, in which execution occurs. That said, it is useful, in this and subsequent
sections, to understand — if only informally — that a member of S captures
the values held in a machine’s ISA-visible storage cells (registers and memory



locations). We will see in Section 5 that the live-in and live-out data processed
by MSSP slaves also constitute machine states, but that these sets will generally
contain members for only a subset of all ISA-visible cells. That is, a machine
state need not hold members for all ISA-visible cells.

Executing an instruction results in updates to a machine’s storage cells, so an
instruction’s execution constitutes a transformation of machine state. Sequential
execution of more instructions is then defined as follows.

Definition 2 (Sequential execution). Function seq : S x Zt — S models
the sequential execution of multiple instructions, and is defined:

S ifn=20
seq(next(S),n — 1) otherwise

sea(sn) = {

Function next : S — S, which is uninterpreted, models the execution of a single
mstruction.

Note that seq(Sp,n) = S states only that S; is the state that results after
executing n instructions in state Sy. Sy determines those instructions implicitly,
since a machine’s state holds both instructions and data. The program counter,
itself a member of Sy, identifies the cell in which the next instruction is held.

4.2 The MSSP execution model

The design of a realistic MSSP machine is encumbered by numerous performance-
mandated features, none of which have any bearing on the processes that underly
its correct operation. Thus, our formalisms are based not on the operation of a
real MSSP machine, but on a more abstract model [9] that eliminates all of the
performance-related complexities. A few differences between the abstract model
and the real machine are worth noting.

First, we view the master as a “black box” that is capable of generating
arbitrary live-in data. This is of course key to our objective of ensuring that
correctness in MSSP is entirely independent of how the fast path operates. This
view does, however, expose a limitation of the model: we cannot guarantee for-
ward progress if we cannot guarantee anything about live-in data. But this is an
artifact of our model, not of the real MSSP machine, which can make guaran-
tees about forward progress because it has the capability to revert, at any time,
to normal sequential execution. In the interests of keeping our formalisms sim-
ple, we choose not to model this dual-mode operation in MSSP, and thus treat
forward progress as a property that can be verified separate from this work.

Second, rather than have each task’s boundaries specified in terms of start
and end program counter values, the abstract model assumes tasks are delineated
by means of an instruction count — a task is complete when the specified number
of instructions have been executed. This simplifies our work because it eliminates
the need to expose the notion of program counter in the formal models.

Finally, a real MSSP machine permits slaves to read (but not to write) ar-
chitected state, which, in turn, allows the master to supply as live-in data only



that which has been modified by it; values not modified recently are fetched by
a slave direct from architected state.? Rather than encumber our model with
these details, we assume the master supplies all data that it assumes a slave will
need; slaves are wholly isolated from architected state (and one another) in our
abstract model.

Analogous to the sequential model, MSSP’s execution is defined in terms
of state transitions, but now manipulation of state occurs at the granularity
of tasks rather than instructions. MSSP contains a collection of “active” tasks.
At each step, the machine selects one task from this collection and, if certain
conditions are met (the task safety requirement), “commits” it to the architected
state. In this section, we do not specify a structure for tasks, nor do we define
how the commit process is effected. We state only that if a task satisfies the
commit requirement, then committing it has the same effect as advancing the
architected state according to the sequential model; we use #t to denote the
number of instructions by which this advancing occurs.

In this section, task safety is not interpreted; we define it only as a necessary
condition for committing a task, and hence for advancing the architected state.
Task safety is a property both of the task to be committed and the machine state
to which the commit is to occur. Changes to machine state can thus establish
or violate the safety of a given task. Hence, committing one task can affect the
safety of another.

We let 7 denote the set of all MSSP tasks, 7* the set of all finite sets of
tasks, and use operator | : 7* x T* +— T* to construct new task sets; it is both
associative and commutative.? | is overloaded to also permit construction of task
sets from individual tasks.

Definition 3 (MSSP execution). Function mssp : S x T* — S models a
single step in the operation of an MSSP machine. Fort € T, 7€ T* and S € S
such that t is safe for S, we define the rule mssp(S,t|T) = mssp(seq(S, #t), 7).
To define MSSP operation on the empty task set, we add rule mssp(S,0) = S.

Note that the above rule is conditional — t must be safe for S for the state
transition to apply, so at this point MSSP’s behavior is left undefined for tasks
that are not safe. Note also that the task that is selected for committing is not
prescribed, since | is associative and commutative. Indeed, a key property of our
model is that we do not impose an ordering on the sequence of task commits.

That ordering of commits is not important was initially surprising to us,
mainly because the extant MSSP design does impose an order. In fact, we dis-
covered this as a direct result of formalizing MSSP, which thus helped us dis-
cover that task safety is the single requirement for correct operation. Further, in
eliminating ordering from our model, we impose minimal constraints on imple-
mentations while still allowing for reasoning about correctness.

2 This is merely a performance-driven design choice: the master could equally supply
all data, but that would demand too much bandwidth between it and each slave.

3 We distinguish | from set union (U) because, in our Maude framework, 7 is not a
set, but a multiset — it can contain duplicate members.



We point out again that our model for MSSP is devoid of any mention of the
master processor. The omission is deliberate — correct operation of the MSSP
machine is not dependent on what the master does. Correctness depends only on
the slaves and the manner in which the results of their execution are committed.

4.3 Equivalence

We need to show that any transformation of state that can be effected by MSSP
can also be achieved in SEQ. In what follows, we first show how we used Maude to
arrive at a slightly weaker result — that MSSP can effect sequential transforma-
tions of machine state — and then a stronger result — that all transformations
that can be achieved by MSSP are also possible in SEQ.

Equivalence on safe task sets. We can extend Definition 3 to describe MSSP
operation at the more coarse granularity of a task set. This requires an extension
of our notion of task safety: a task set is considered safe for a given machine state
if there exists some enumeration of its members such that each is safe for the
machine state resulting from committing its predecessor. A simple inductive
argument then gives us the following.

Lemma 1. If 7 € T* is safe for S, then mssp(S,7) =* mssp(seq(S,#7),0) =
seq(S, #71).

The above lemma states that an MSSP machine starting out in state S and with
an active set of tasks 7, which is safe for S, can attain the same configuration as
a sequential machine executing #7 instructions from the same S. This is because
safety of a task set is defined in terms of the existence of a safe enumeration of
its members, yet MSSP operation is not constrained to follow the order of such
an enumeration. We therefore cannot infer that MSSP necessarily commits all
members of a safe set of tasks; it will do so only if it chooses the right commit
order. If it chooses poorly, it can commit some task which, despite being safe,
is not the next task in any safe enumeration of 7. In such a case, the remaining
members of 7 can be rendered unsafe.

It is important to realize that even though our model permits MSSP to pick
an inappropriate task, it is never wrong for that task to be committed — since
it was safe, committing it, by definition, advances architected state as per SEQ.
Choosing an inappropriate task affects only the efficiency of the machine, not
its correctness, as shown next.

Equivalence for all task sets. We can easily extend the above result to cater
for any collection of tasks in the active set. To do so, we define mssp(S,7) =
mssp(S, D) for all 7 € T* that contain no tasks safe for S. Thus, if the machine
chooses to commit a task that renders the remainder of its active task set un-
safe, it simply discards what remains. Hence our earlier claim that inappropriate

10



choices affect only the machine’s efficiency: the order in which tasks are com-
mitted determines the fraction of the active set that can be committed before
the remainder is discarded.

We are now in a position to define MSSP operation on any given task set.
Our main result rests on the claim that any given task set can be partitioned
into two disjoint subsets, one that is safe for the current architected state and
one that contains no safe members.

Theorem 1. If T is safe for machine state S, and 7' contains no members that
are safe for seq(S, #7), then mssp(S, 7|7') =* mssp(seq(S, #7),0) = seq(S, #7).

In the above, we assert the existence of a sequence of transitions; we do not
claim that, given task set 7|7/, the MSSP machine will necessarily reach state
seq(S, #7). However, we can invoke a “meta-argument” about our specification
to prove that any trace of MSSP execution on a given set of tasks effects a bisec-
tion of that set into a safe subset and a subset that contains no safe members,
so Theorem 1 applies to any execution of the MSSP machine. In other words,
all executions in MSSP are possible in SEQ.

5 Second iteration

In the previous section, tasks were uninterpreted and effectively treated as the
atomic units on which execution of an MSSP machine is based. Likewise, task
safety and the commit operation were uninterpreted and treated as basic capa-
bilities of the machine. In this section, we zoom in on the domain 7 by imposing
a structure on tasks, which yields a stuttering refinement [6] of the MSSP exe-
cution model. Thus, we now describe MSSP’s execution at an instruction rather
than at a task granularity. In so doing, we also partially interpret both task
safety and the commit process; Section 6 further refines those concepts.

Once again, we point out that the results presented here are distilled from
the original Maude specifications [8], to which we refer the interested reader.

5.1 Tasks

In the existing MSSP implementation, a task is constructed by the master pro-
cessor, then transferred to a slave where it executes to completion, and finally
checked by the verification unit, which either commits or discards the results.
Consequently, we define a task as a tuple comprising input and output data,
plus information about the current state of the execution at a slave processor.

Definition 4 (Task). A task is a 4-tuple contained in T =8 x ZT x S x ZT.
The tuple (Sin,n, Sout, k) € T denotes a task with live-in set S;, and live-out
set Sout. The value n is the number of sequential instructions that constitute
complete execution of this task; k is the number of instructions that have been
executed by a slave so far (0 <k <n).

11



A newly created task has form (S;,,n,Si,,0); at its completion, it has form
(Sin,n, Sout,n). We will relate S, and S, later in this section.

We define a number of functions on 7 for the sake of notational convenience.
Let ¢t = (Sin,n, Sout, k). Functions live_in : T +— S and live_out : T +— S
produce the live-in and live-out sets for a given task. Thus, live_in(t) = S;, and
live_out(t) = Sout. Function # : 7 +— Z7T, which we introduced in the previous
section, yields the second component of a task: #t = n.

5.2 Task evolution

We use task evolution as a means for modeling the manner in which a task is
processed by a slave processor. It is defined as follows.

Definition 5 (Task evolution). Let (S, n, Sout, k) € T be a task in an MSSP
machine’s active task set. Then the following transition rule applies.

(Sin,n, next(Sout), k+ 1) if k <n

(Sin, 1y Sout, k) = { (Sins 1, Sout, 1) otherwise

Note that this rule is decoupled from the specification of the MSSP machine
itself, so tasks evolve independent of, and concurrent with, the task commit pro-
cess defined in the previous section. From the above definition it is also clear that
slaves execute according to the sequential model. More precisely, the first step in
slave execution simply advances the live-outs as per SEQ: live_out(t), which is
initially the same as live_in(t), is transformed to next(live_in(t)). Extrapolating,
we arrive at the following transition rule.

Lemma 2. (S;,,n,Si,0) =* (S, n,seq(Sim,n),n).

In fact, we can say something stronger: since we specify no transition rules other
than those in Definition 5, the only way in which a task can reach completion
is through the sequential advancing of its live-in set. That is, if ¢ is a completed
task, then live_out(t) = seq(live_in(t), #t).

5.3 Task safety and commit

Having introduced task evolution, we can now partially interpret task safety.
To do so, we introduce the notion of superimposition, which models the commit
process. Operator _ < _: S xS — S denotes the superimposition of one machine
state onto another. We do not interpret this operation formally, simply because
the domain § itself remains uninterpreted. However, the intuition behind its
operation should be clear: Sy <+ S is the machine state that results when Sy is
overwritten by S;.*

Definition 6 (Task safety). t € T safe for S if seq(S, #t) = S «— live_out(t).

Since live_out(t) = seq(live_in(t),#t) at the completion of ¢ (Lemma 2), task
safety is equivalently characterized by seq(S, #t) = S « seq(live_in(t), #t).

4 Recall that live-in and live-out sets need not represent the state of a whole machine.
It can therefore be the case that Sy refers to storage cells not covered by Si. Those
cells will appear, unchanged, in the superimposition.

12



5.4 MSSP operation, refined
We can now replace Definition 3 with the following.

Definition 7 (MSSP operation, refined). Lett € 7 and 7 € T*. If S is a
state for which t is safe, then mssp(S,t|T) = mssp(S «— live_out(t), 7).

We have argued that at the completion of task ¢, live_out(t) = seq(live_in(t), #t).
Since t is safe for S, S «— seq(live_in(t), #t) = seq(S, #t), so the above refine-
ment implies mssp(S, t|7) = mssp(seq(S, #t),7), which is precisely Definition 3.

6 Third iteration

We have not yet specified what the check for task safety entails. We now refine
our formal models to prove that a more low-level set of checks, which have
feasible hardware implementations, are sufficient to ensure task safety. To do so,
we first introduce a number of constraints on the superimposition operator and
then refine our SEQ model to incorporate superimposition.

6.1 Superimposition

In this subsection, we persist with an informal view of superimposition, but
we now impose a number of constraints on its behavior. In order to do so, we
must first refine knowledge about machine state. We introduce an uninterpreted
“consistency” operator - C _: S x S + {true, false}, understanding informally
that S; C S implies that S is consistent with S in the sense that all of the
storage cells of Sy are also available in Sy and, further, that both agree on the
values held in those cells.

Definition 8 (Superimposition properties). Superimposition satisfies

1. Associativity: (S1 < So) < S3 =51 « (S « S3);
2. Containment: S; C Sy implies (S «— S3) C (Sg — S3);
3. Idempotency: So C S implies (S — S2) = Si.

6.2 Sequential execution, refined

A sequential machine operates by fetching an instruction, decoding and execut-
ing it, and then writing the results back to machine state. This view leads to
a definition of instruction execution in terms of superimposition. Before that,
however, we must address a problem incurred by SEQ in the context of MSSP
slave execution. Tasks evolve by sequentially advancing their live-in sets (as per
Definition 5). Since those live-in sets are produced by the master, they are po-
tentially unsuitable for the purposes of executing the next instruction (we make
no assumptions about the live-ins produced by the master). To serve as a pre-
condition for well-defined sequential execution, we introduce an uninterpreted
notion of machine state completeness. Completeness is largely ISA-specific, but

13



we can understand it in a general sense as follows. A machine state is complete
for an instruction’s execution if it contains a cell for the program counter, the
memory cell pointed to by that program counter (the instruction itself), and
all other cells (registers and/or memory locations) that the instruction will read
during its execution.

Definition 9 (Instruction execution). If S € S is complete, then we define
next(S) to be S «— §(S). Thus, 6(S) € S constitutes the changes to state that
will result from executing the next instruction.

Effectively, the function § : S +— &, which is defined only if its argument is
complete, performs the fetch-decode-execute steps alluded to above; the super-
imposition “commits” the results.

A key property of sequential execution upon which our results depend is de-
terminism. Specifically, we require that advancing two consistent machine states
by the same number of steps must yield consistent results. Formally, S; C S
must imply seq(S1,n) C seq(S2,n). This can be inferred from the more basic re-
quirement that execution of a single instruction be deterministic: S; C Sy must
imply 6(S1) = §(S2). That is, two consistent, complete states, which will execute
the same instruction on the same data when advanced one step, must produce
the same set of outputs.

Of course, sequential execution of n instructions is well-defined only if, at
each step along the way, the machine state is complete. When this is the case for
a given machine state, we will say that state is n-complete. More formally, S is
n-complete if it is complete (for one instruction) and next(S) is (n—1)-complete.

In order to define sequential execution in terms of superimposition, we intro-
duce the notion of cumulative writes, which are the results that accrue from the
sequential execution of multiple instructions.

Definition 10 (Cumulative writes). The cumulative writes generated by se-
quential execution are given by A: S x ZT +— S. For alln > 0, we define

0 ifn=0
A(S,n) = {A(S,n —1) « 5(seq(S,n — 1)) otherwise

From properties of superimposition, determinism and cumulative writes we ob-
tain the following important result.

Lemma 3. For alln > 0, the following hold.

— If S € S is n-complete, then seq(S,n) =S «— A(S,n).

— For 51,55 € § n-complete, S1 C Sy implies A(S1,n) = A(S2,n).
6.3 Establishing task safety

We can now show that checking for task safety, which we have assumed is a
basic capability of the MSSP machine, is equivalently performed through two
low-level checks. This result is expressed formally as follows.

14



Theorem 2. IfS; C Sy € S are n-complete then seq(Sa,n) = Sy «— seq(S1,n).

This result follows from Lemma 3 and the properties of superimposition that
we enumerated in Definition 8. Specifically, since Sy is n-complete, seq(S1,n) =
S1 «— A(S1,n). Hence, Sy «— seq(Si,n) = Sy «— (S1 < A(S1,n)). Since su-
perimposition is associative, the right hand side is the same as (S «— S;) <
A(Sy,n). But S; C Sa, so Sy «— S; = Si. Thus, Sy «— seq(S1,n) = Sy —
A(S1,n). But we also know that A(Sy,n) = A(S1,n), and hence that Sy «
seq(S1,n) = So — A(S2,n). The latter expression is exactly seq(S2,n).

The obvious implication of this result is that completeness and consistency
imply task safety: if S is the architected state of an MSSP machine, and ¢t €
7 is some task such that live_in(t) C S and live_in(t) is #t-complete, then
seq(S, #t) = S « seq(live_in(t), #t). That is, t is safe for S.

7 Conclusion

We have shown that MSSP achieves the equivalent of a sequential execution,
albeit at the coarser granularity of tasks rather than instructions. Through our
formalization of its operation, we isolated the concept of task safety as the prin-
cipal factor that underpins correctness. We proved that safety follows from com-
pleteness and consistency of live-ins with respect to architected state, two re-
quirements that the existing MSSP architecture can easily be shown to satisfy.

In establishing the above results, we also discovered a number of unexpected
properties of MSSP. Good examples are the associativity of superimposition
(commits) and our dependence on determinism in SEQ. In a sense, these results
are merely artifacts of the formalization process itself — superimposition’s as-
sociativity, for example, was needed in the proof of one of our lemmas. In this
respect, we feel the process of deriving the formal model was as beneficial to our
understanding as was the final model itself. On those grounds alone, the exercise
proved its worth.

In general, all the benefits we reaped in this work are a result of the system-
atic, rigorous thinking necessitated by formalization. The computer architects
involved in this work found such rigor particularly liberating because it permit-
ted us to focus on the fundamental, implementation-independent issues, rather
than on the intricate performance-mandated design points. Indeed, the ability
to separate correctness from performance concerns pervades our work; the for-
malization of MSSP reinforced our conviction in this respect.

We found the process of mechanizing our proofs in Maude to be easy and
intuitive. Deriving the Maude modules from a manual (pencil-and-paper) ef-
fort [9] was completed in well under a week, mostly by a novice Maude user.
The mechanization did force an even more rigorous approach, which, in turn,
exposed even more fundamental assumptions we were making. For example, our
discovery that commit order is not important is a good example of how Maude
assisted us — having to be explicit about associativity and commutativity of
operators brought this issue to the fore. That said, we were on occasion frus-
trated by the system’s inability to reduce certain terms as required, which forced

15



us to sometimes organize the modules in a non-ideal fashion. In mitigation, this
problem eased as our experience grew, but certainly a proof assistant tool, which
permits its user to specify explicitly which rewriting rules — be they equational
or transitional — should be applied, would have been a boon.

In summary, our efforts in the formal verification of MSSP have been enor-
mously fruitful. In fact, our positive experiences have motivated further work.
We have recently started reasoning about MSSP operation on machine state,
such as memory-mapped 1/O addresses, where we cannot rely on accesses being
idempotent. Speculative execution is precluded in such regions, demanding that
we impose task boundaries and proceed, non-speculatively, as per SEQ.

References

1. Arvind and X. Shen. Using term rewriting systems to design and verify processors.
IEEE Micro, 9(3):36-46, May/June 1999.

2. J.R. Burch and D.L. Dill. Automatic verification of pipelined microprocessor con-
trol. In Proc. International Conference on Computer Aided Verification, volume
818 of LNCS, pages 68—80, June 1994.

3. M. Clavel, F. Durédn, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Tal-
cott. Maude 2.0 Manual, 2003. http://maude.cs.uiuc.edu/manual.

4. M. Clavel, F. Durén, S. Eker, and J. Meseguer. Building equational proving tools
by reflection in rewriting logic. In CAFE: An Industrial-Strength Algebraic Formal
Method. Elsevier, 2000.

5. D.L. Dill, A.J. Drexler, A.J. Hu, and C.H. Yang. Protocol verification as a hardware
design aid. In Proc. IEEE International Conference on Computer Design: VLSI
in Computers and Processors, pages 522-525, October 1992.

6. L. Lamport. What good is temporal logic? In Information Processing '83: Proc.
IFIP 9th World Congress, pages 657—668, September 1983.

7. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73-155, April 1992.

8. P. Salverda, G. Rosu, and C. Zilles. Maude formalization of MSSP. http://fsl.
cs.uiuc.edu/mssp.

9. P. Salverda and C. Zilles. Formal verification of MSSP. Technical Report
UIUCDCS-R-~2003-2384, University of Illinois at Urbana-Champaign, December
2003.

10. J. Sawada and W.A. Hunt. Trace table based approach for pipelined microprocessor
verification. In Proc. International Conference on Computer Aided Verification,
volume 1254 of LNCS, pages 364-375, June 1997.

11. J. Sawada and W.A. Hunt. Processor verification with precise exceptions and
speculative execution. In Proc. International Conference on Computer Aided Ver-
ification, volume 1427 of LNCS, pages 135146, June 1998.

12. G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar processors. In Proc. 22nd
Annual International Symposium on Computer Architecture, pages 414-425, June
1995.

13. C. Zilles. Master/slave speculative parallelization and approzimate code. PhD
thesis, University of Winsconsin - Madison, 2002.

14. C. Zilles and G. Sohi. Master/slave speculative parallelization. In Proc. 35th
Annual ACM/IEEE International Symposium on Microarchitecture, pages 85-96,
November 2002.

16



