
PROGRAM ORIENTEERING

BY

NAVEEN NEELAKANTAM

B.S., University of Illinois at Urbana-Champaign, 2001

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2004

Urbana, Illinois

TABLE OF CONTENTS

1 INTRODUCTION . 1

1.1 Feedback-Directed Optimization Frameworks 1
1.2 Overview of the Program Orienteering Framework 3
1.3 Contributions . 5

2 SYSTEM DESIGN . 6

2.1 The Program Orienteer . 6
2.1.1 Simple loop example . 8

2.2 Refining the Approximate Code . 9
2.2.1 Software profiling . 10
2.2.2 Stub adaptation . 10

2.3 Hardware Components . 12

3 ELABORATING EXAMPLES . 13

3.1 False Loop Seeds . 13
3.2 Loops with Function Calls . 14
3.3 Tail-Call Elimination . 14
3.4 Trimming Dangling Paths . 14
3.5 Nested Loops . 15
3.6 Indirect Branches . 17
3.7 Lessons Learned . 17

4 EXPERIMENTAL RESULTS . 19

4.1 Methodology . 19
4.2 Results . 21

5 CONCLUSION . 26

APPENDIX A MSSP OVERVIEW . 27

REFERENCES . 30

iii

1 INTRODUCTION

A general property of computer programs is commonly referred to as the 90/10 rule: a
program spends approximately 90% of its execution time in approximately 10% of the
(executed) static program. The 90/10 rule intuitively derives from programs spending most
of their execution time inside of loops (or mutually recursive functions). We will refer to
the frequently executed 10% of the static program as hot and the remaining 90% as cold.

Computer system designers frequently exploit the 90/10 property of programs in order
to focus their optimization efforts. A significant reduction in the execution time of the hot
10% of a program will result in a significant reduction in the overall running time.1 In
particular, optimization techniques using feedback-directed optimization (FDO) attempt to
gather information about hot parts of a program in order to guide optimization.

Figure 1.1 shows the dynamic execution count for the static instructions in vortex.2

As expected vortex displays the 90/10 property: 15% of the (executed) static instructions
are responsible for 90% of the overall execution time. The figure shows that the majority
of static instructions are seldom or never executed, and the hot instructions tend to be
clustered in contiguous regions.

The focus of this work is a hardware and software mechanism that can identify these
hot program regions. The mechanism is part of a processor framework capable of applying
compiler transformations. The novel aspect of the proposed mechanism is its ability to ac-
curately characterize the hot program regions such that a runtime compiler can beneficially
apply speculative code optimizations.

The remainder of this section is organized as follows. Section 1.1 begins by discussing
prior optimization frameworks. Section 1.2 overviews the proposed mechanism and the
framework used in this work. Section 1.3 highlights the contributions of our mechanism
and outlines the remainder of this work.

1.1 Feedback-Directed Optimization Frameworks

Feedback-directed optimization (FDO) frameworks collect profile information (feedback)
from the execution of a program and use it to guide optimization. The profile helps charac-
terize the behavior of the program, and an optimizing compiler then uses this information
to optimize the program for common behavior.

1Clearly Amdahl’s law implies that the cold part of a program will increasingly contribute to the overall
execution time as the hot parts are optimized. This does not invalidate the 90/10 rule, but it implies that
the 10% shifts as optimizations are applied.

2The results are from the entire execution of vortex using a reduced reference input set. We do not
present similar figures for the other SPECint2000 benchmarks, but they display similar characteristics.

1

0 200000 400000 600000

Static Program Address

100000

1000000

10000000

100000000

1000000000

D
y

n
a

m
ic

 E
x

ec
u

ti
o

n
 C

o
u

n
t

Figure 1.1: Dynamic execution count of static instructions in vortex

Two general classes of feedback-directed optimization frameworks exist: static and dy-
namic. Static FDO frameworks (e.g., FX!32 [1] and Spike [2]) collect profiles from a set
of program executions and recompile and optimize the program offline. The optimized
program can then replace the original during subsequent executions. Because static FDO
frameworks perform optimization offline, resource-intensive techniques are viable and a
large amount of optimization effort can be invested. However, the optimization potential
of information gathered during an execution run of the program cannot be exploited until
after that run has completed. This introduces the possibility that the collected profile will
incorrectly characterize future runs, and, as a result, the optimizations based on the profile
may not improve, or, could even degrade, performance.

In contrast, dynamic FDO frameworks (e.g., CMS [3], DAISY [4], Dynamo [5], IA32EL [6]
and Jalapeño [7]) collect profile feedback and employ optimizations during execution of the
program. The dynamic framework periodically analyzes the profile information collected
and applies optimizations suggested by recent program behavior. As a result, a dynamic
framework can potentially improve program performance during an execution, but must
also account for any profiling and recompilation overhead. To achieve a net performance
improvement, the benefits of optimization must exceed the cost of profiling and recompila-
tion.

Because of the need to amortize overhead, some FDO frameworks employ staged op-
timization techniques. All regions are initially optimized using lightweight techniques or
left unoptimized, in order to reduce overhead. As regions are executed more frequently,
they pass through additional optimization stages that apply progressively higher-levels of
optimization (eventually approaching levels used by static FDO frameworks). As a result,
staged dynamic FDO frameworks such as Dynamo [5] and Jalapeño [7]) balance the cost of
optimization effort against the expected performance gain for a given region.

Even so, there are limits to the degree of optimization that can practically be achieved
by FDO frameworks for traditional architectures. The collected profile merely indicates
past program behavior, and it is therefore difficult for the FDO framework to distinguish

2

code that has merely not yet been needed from code that will never be needed. As a result,
such systems conservatively retain all of the code in the original program, and only optimize
it such that the expected behaviors are made fast at the expense of the unexpected ones.

Master/Slave Speculative Parallelization (MSSP) is a novel processor paradigm that
overcomes this limitation. MSSP enables an FDO framework to generate an optimized ver-
sion of the program that matches expected behavior without retaining the code necessary
for the unexpected behavior [8, 9]. An FDO framework for MSSP generates an optimized
version of the program, called the approximate program, using approximation transforma-
tions that are allowed to violate correctness requirements. An MSSP-enabled processor uses
the approximate code in conjunction with the original code to provide the full functionality
of the original program at the speed of the approximate program. See Appendix A for a
brief overview of the MSSP paradigm and the performance benefits of approximate code.

Section 1.2 describes a staged optimization framework for a processor implementing the
MSSP paradigm. MSSP provides our framework with a wide range of optimization flexibility
in generating the approximate program. However, many of the potential optimizations are
highly speculative, and our framework must have an accurate characterization of program
behavior before applying them.

1.2 Overview of the Program Orienteering Framework

Any dynamic FDO framework must learn about the program being executed before it can
beneficially apply optimizations. Initially, a dynamic optimizer will have no information and
must characterize the running program, a process that we refer to as program orienteer-
ing.3 For this purpose, we propose a hardware-software mechanism that we call a program
orienteer to ascertain enough information to direct generation of approximate code. The
program orienteer has the following requirements:

1. The program orienteer is able to identify hot program regions. This is of
the utmost importance to any dynamic optimizer. The frequently executed regions of
the program should be optimized to maximize performance.

2. Hot program regions are identified and characterized in parallel with full-

speed native execution. Execution of the original program does not need to pause
while hot regions are characterized. This avoids the overhead that is typical of other
dynamic optimization frameworks.

3. Hot program regions are targeted for additional profiling to expedite learn-

ing about the program’s behavior. The orienteer inserts software profiling in-
structions into approximate code that is otherwise identical to the original hot code.
This profiled code is used to gather information that can accurately guide staged
optimization.

The program orienteer uses both hardware and software mechanisms to meet these
requirements. It uses hardware to perform the simple, repetitive tasks of collecting profile
information for the program; a relatively small amount of hardware would be needed, and
hardware provides a low-overhead method of accomplishing the task. It uses software to

3Orienteering is a competitive sport in which participants (orienteers) use a map and compass to navigate
through unfamiliar landscape and find specific goal points

3

provide sophisticated program analysis, which can be decoupled from native execution in a
multiprocessor system.

Figure 1.2 abstractly depicts our dynamic FDO framework and how it interacts with
the program orienteer. It is composed of a processing unit (which is an abstraction for an
actual processor architecture), program orienteer software, a runtime compiler, two data
structures stored in memory (the profile data and the Intermediate Representation (IR)),
and two static binaries (the original program and the approximate program).

� � � � � � �
� � 	 �

� � �
 � � �
� � � �
 	 � � � � �

� �
 	 � � �
� � � � � � � �

� � �
 �
 � �
� � �
 � � �

� � � � � � � �

�
 � 	

�

�
�

�

� � � � � � � � � 	 �
� � � � � � �
 � ��

� � � � � � � � � 	 �
� � �
 � � �

Figure 1.2: Diagram of the program orienteering framework.

The role of the processing unit is to execute the original program or its corresponding
approximate-program region if one exists. While executing the original program, the pro-
cessing unit samples the dynamic targets of control-flow instructions with an augmented
hardware profiler and stores the edge samples into the profile data structure 1©.

Periodically the profile samples are inspected to find hot loop seeds (described in Sec-
tion 2.1), which are provided to the program orienteer as starting points 2©. The program
orienteer software begins exploring the original program from these starting points and uses
profile data and the original-program binary as guides. As the program orienteer explores
the program it constructs a compiler Intermediate Representation (IR) 3© that contains
higher-level structures (i.e., basic blocks and functions) and the control relationships be-
tween them (i.e., a Control-Flow Graph (CFG) and a call graph).

After a region has been explored, the runtime compiler uses the information in the IR
to generate approximate code 4©, and the framework stores a mapping between the original
code and the new approximate code region. As the processing unit executes the original

4

program, the framework searches for corresponding mappings, and, if it finds one, passes
the processing unit the mapped approximate code for execution 5©.

The first time a region is approximated, the orienteer inserts profile instructions into
it. When executed, these instructions collect additional profile data that provides the
program orienteer with more accurate information about program behavior. Gradually
the orienteer will generate a characterization of the program that can be used to apply
speculative compiler optimizations.

1.3 Contributions

This work differs from previous research on FDO frameworks in three ways. First, our
framework executes the original program binary in hardware, obviating the need for software
interpretation. Second, it does not depend entirely upon an initial profile of a program
region to guide optimization, but, instead, utilizes flexible profile instructions to refine
program characterization. Third, our framework carefully reconstructs a meaningful IR of
the dynamic program.

As described in Section 2.3, our framework executes the original program in hardware
rather than interpreting it in software. As a result, our framework is not rushed to generate a
natively executable binary in order to circumvent the large performance penalties associated
with software interpretation. However, we do not have the privilege of collecting profile
information while interpreting, so we have to use a separate mechanism. For this work we
augment the processor that executes the original program with a hardware profiler that
samples control flow.

Because our hardware-collected profile is sampled, our framework presumes that the
initial profile suffers from sampling error. We therefore use the initial profile to generate
conservative approximate code that we instrument with profile instructions. The profile
instructions provide more accurate information that guides speculative approximation. In
Section 2.2.2 we describe how our framework uses profile instructions to speculatively remove
highly biased branches.

Although this work does not fully implement a runtime compiler, we believe that the
success of approximation and optimization passes will depend on the orienteer’s ability to
generate a meaningful compiler intermediate representation. Because the original-program
binary does not retain high-level information, the orienteer takes great care when construct-
ing an IR for the program, especially when considering optimized original program binaries.
Chapter 3 provides illustrating examples.

In Chapter 2 we will describe the design of our dynamic FDO framework in greater
detail. Chapter 3 will provide code examples that illustrate some of the issues confronting
the orienteer. Chapter 4 will present experimental results and we will conclude in Chapter 5.

5

2 SYSTEM DESIGN

This section expands upon the staged dynamic FDO framework introduced in Section 1.2
and depicted in Figure 1.2. Specifically, it elaborates upon the design of the program
orienteer. Section 2.1 provides an overview of the program orienteer. Section 2.2 describes
how the program orienteer can aid generation of approximate code. Section 2.3 briefly
describes the hardware components in our framework.

The framework has been designed specifically for a processor implementing the MSSP
paradigm. The MSSP paradigm is particularly amenable to dynamic FDO techniques be-
cause of its ability to utilize an optimized version of an original program called the approx-
imate program. A discussion of the MSSP paradigm and the approximate program can be
found in Appendix A.

2.1 The Program Orienteer

Our framework invokes the program orienteer whenever a frequently executed backedge,
called a hot loop seed, is discovered. The hot loop seed provides the program orienteer with
a hint as to the location of a hot program loop. The target of the backedge is the address
of the loop header, and the source of the backedge is the address of the loopback branch.

The program orienteer’s algorithm for exploring hot program loops is shown in Fig-
ure 2.1. Exploration begins in function ExploreHotLoop which takes the source and target
of the loop backedge as arguments (hot loop tail and hot loop header respectively).
ExploreHotLoop starts by exploring the basic block at the target of the backedge by calling
ExploreBasicBlock. It then follows Control-Flow Graph (CFG) edges out of each basic
block in the worklist by calling AddBasicBlockSuccessors. Finally, it either declares the
exploration process as successful if the loop backedge was explored or returns an error.

ExploreBasicBlock decodes the static instructions at the specified address and adds
them to the basic block being explored one instruction at a time.1 The process continues
until a control instruction is found, which completes the basic block. The orienteer places
the finished basic block onto the global worklist and marks the basic block address as having
been explored.

AddBasicBlockSuccessors queries the collected profile data using the address of the
specified basic block’s terminating instruction. The function checks each profiled target
of the control instruction to see if it exceeds a bias threshold. If the target is sufficiently
biased, the orienteer will consider the path active and will explore the target basic block by
calling ExploreBasicBlock. Otherwise, a special block, called a stub block, is added that

1The orienteer decodes the instructions by consulting the original-program text, which we presume is
accessible in memory.

6

ExploreHotLoop(hot_loop_header, hot_loop_tail)

ExploreBasicBlock(hot_loop_header)

while worklist is not empty

basic_block = block popped from worklist

AddBasicBlockSuccessors(basic_block)

//Return success if hot loop backedge was explored.

if control-flow edge exists from hot_loop_tail to hot_loop_header

return success

else

return error

ExploreBasicBlock(address)

//Do not explore an address more than once.

if address has already been explored

return

new basic_block

done = false

temp_addr = address

//Add static instructions to basic_block until a

// control instruction is found.

while not done

add static instruction at temp_addr to basic_block

if static instruction at temp_addr is a control instruction

done = true

increment temp_addr

mark address as having been explored

push basic_block onto worklist

AddBasicBlockSuccessors(basic_block)

control_inst = terminating instruction of basic_block

profiled_targets = list of profiled target addresses for control_inst

//The fallthrough path of a direct control instruction

//will be included in the profiled targets

for each target in profiled_targets

if target is sufficiently biased

ExploreBasicBlock(target)

else

//A stub block denotes an unexplored path.

create a stub block for target

//Add a CFG edge for each profiled target

add control-flow edge from control_inst address to target address

Figure 2.1: The program orienteer loop exploration algorithm.

7

denotes a path that has been skipped. The significance of the stub block will be discussed
in Section 2.1.1.

The algorithm presented in Figure 2.1 does not address many of the more complicated
cases common in real programs. Chapter 3 discusses some of these complexities and dis-
cusses how they are addressed by the program orienteer. However, the algorithm covers the
basics and is sufficient for the example presented in Section 2.1.1.

2.1.1 Simple loop example

Figure 2.2 provides an example of the program orienteer in action over a simple hot loop.
The figure depicts the various phases of the loop exploration algorithm, beginning with the
hot loop seed. As shown in the figure, the result is a complete representation of the hot
loop.

!

"

$ % &
' (#
) * + ,
' - * . %

' - * . %
+ , ,

/ ()

. 0

+ , ,

1 2 3 4 5 6 78 8 2 7 9 3 : 3 4 5 6 7

!

"

; < = ; > =

; ? =

; @ =

!

A

"

B 9 9 C D 6 6 E
3 4 F G 6 3

B 9 9 C D 6 6 E
D 9 H F I 6

J K L ? A

J K L ? M N

+ , ,
) * + ,

$ % O

Figure 2.2: Example of loop exploration by program orienteer. (a) Original-
program instructions with the loop seed denoted. (b) Exploration of the first basic block,
and query results for the terminating instruction. (c) Exploration of the remaining active
basic blocks and discovery of the loop seed source. (d) Insertion of stub blocks for omitted
paths.

The orienteer provides the hot loop IR to a runtime compiler in order to generate an
MSSP approximate code region. The runtime compiler will add the constructs necessary for
the MSSP paradigm, namely the entry, fork, and verify blocks. The runtime compiler
can also apply optimizations to the approximate code, but for simplicity we will not consider
them at the moment.

8

P

Q

R

S T U V W

S T U V X Y

P Z

Q Z

R Z

S T U V W

S T U V X Y

[\] ^

_ `] a [b

` c T] b

d e f gf g gh i j k l m h n o
k m hd e f g
k l e p j

q j p r s t u

f g gh i j u v

P Z

Q Z
R Z

s e p w x

y f k l j p j i g
y f k l j p j i g S T U V X YS T U V W

P P Z
z { | | a c } Y { V ~ `

{ | |] \ �\] a }

� { � � V � � � �

�

Figure 2.3: Generation and deployment of approximate code region. (a) Rep-
resentation provided by orienteer (see Figure 2.2). (b) Corresponding approximate code
representation. (c) Deployment of approximate code and update of MSSP mapping table.

Figure 2.3 depicts the layout and deployment of generated approximate code. The
approximate code is written to available memory,2 and the MSSP map table is updated.
The map table associates the entry of the approximate code with an original-program PC
so that execution can transition into MSSP mode (see Appendix A for details).

Note that the generated code for the stub blocks contains master end instructions. The
master end instruction terminates the master processor in the MSSP paradigm. Essentially,
this is a performance enhancement during program characterization and is discussed in
Appendix A.

2.2 Refining the Approximate Code

The program orienteer’s initial characterization of a region may either be slightly inaccurate
(because the hardware edge profiler statistically samples control flow) or incorrect altogether
(because program behavior changes). Alternatively, the orienteer may have generated overly
conservative code and included unnecessary paths or instructions. To counteract either
situation, the orienteer inserts software profiling instructions into the approximate code
in order to gather more accurate information. The program orienteer uses the collected
information to guide adaptation of the deployed approximate code as the characterization
improves.

2For simplicity, presume that the system includes internal physical memory not visible to the operating
system.

9

2.2.1 Software profiling

One of the implicit advantages to generating specialized code dynamically is that it can
utilize implementation-specific ISA features exposed by the hardware. In our framework,
the ISA has been expanded to include a flexible software profiling instruction. This new
instruction essentially exposes a mechanism (akin to the hardware edge profiler described
in Section 2.3) that can record the execution frequency of profiling instructions. The profile
instruction encodes the ID of a counter that should be incremented and a threshold value.
When the threshold is exceeded, it can invoke a software handler (which in our case is
the program orienteer). The profile instruction also encodes a sampling rate that causes
counter updates only to occur when the instruction is sampled.3 The semantics of the
profile instruction are even flexible enough to implement other profiling techniques such as
value profiling or path profiling, but the use of these features is left for future work.

The program orienteer inserts these profiling instructions into the approximate code
in order to gather more information about program behavior. For instance, the program
orienteer inserts profiling instructions along paths in the approximate code region in order to
determine if a path was correctly included or if a path is uncommon enough to be stubbed.

2.2.2 Stub adaptation

Our implementation of the orienteer instruments any stubs deployed in the approximate
program by inserting profile instructions. Figure 2.4 depicts how profile instructions are
used for this purpose. A pair of profile instructions are inserted into the stub block and
its immediate predecessor block, which enables the program orienteer to learn about the
relative execution frequencies of the blocks.

The threshold values for each profile instruction can be set independently and their ratio
defines a branch bias threshold. For instance, if the stub threshold is 1% of the predecessor
threshold and the predecessor branches to the stub more than 1% of the time, the stub
counter will trigger, which indicates an active stub for the program orienteer to explore.
On the other hand, if the predecessor branches to the stub less than 1% of the time, the
predecessor counter will trigger, which indicates a cold stub that the program orienteer can
remove.

Figure 2.5 uses the running example to demonstrate the stub adaptation process in
which the stub block C becomes active. The orienteer removes the stub block and the path
from block A to block C in the original program is explored. In the example, a new basic
block C′ is inserted that precedes the loop-back block D′.

The deployed approximate code is updated with the new basic block and CFG edges.
To minimize overhead, rather than regenerating the entire region, the necessary updates
are made to the deployed code in place. First, the new basic block C′ is written to the
nearest available program memory. Then, the profile instruction in block A′ is converted
to a nop and the target of the terminating branch instruction in block A′ is updated with
the starting address of block C′. Finally, the memory occupied by the removed stub block
is freed for later use.

If, on the other hand, the orienteer learns that the stub path is cold, the orienteer will
remove the stub. After doing so, it will convert both the branch to the stub block and
the profile instruction in block A′ to nop’s, and will free the memory occupied by the stub

3The profile instruction sampling rate applies on a per instruction basis, and is not a global rate. There-
fore, sampled profile instructions are not as susceptible to sampling error.

10

� �

� �

� �

� � � � �

� � � � � �

� � � �

� � � � � �

� � � � �

� � � �� � �
� � � � ¡ � ¢ £

� ¡ �� � � �
� � ¤ �

¥ � ¤ ¦ § ¨ ©

� � �
� � � © ª

� �

� �

� �

§ � ¤ « ¬

­ � � � ¤ � � �
­ � � � ¤ � � �

� � � � � �

® ¤ � § ¦ � �

® ¤ � § ¦ � �
® ¤ � § ¦ � �

® ¤ � § ¦ � �

� � � � �

¯ ° ± ² ³ ´
µ ³ ¶ · ¯ ¸ ²

¹

¯ ° ± ² ³ ´
µ ³ ¶ · ¯ ¸ ²

¯ ° ± ² ³ ´
µ ³ ¶ · ¯ ¸ ²

¯ ° ± ² ³ ´
µ ³ ¶ · ¯ ¸ ²

º » ¼ º � ¼

Figure 2.4: Stub profiling. (a) The orienteer inserts profiling instructions into all stub
blocks as well as their predecessors. This enables the orienteer to learn about the execution
frequency of each stub block relative to its predecessor. (b) The profiled approximate code.

½ ¾ ¿ À¿ À À
Á Â Ã Ä Å Æ Á Ç È

Ä Æ Á½ ¾ ¿ À
Ä Å ¾ É Ã

Ê Ã É Ë Ì Í Î

¿ À À
Á Â Ã Î Ï

Ð Ñ

Ò Ñ

Ó Ñ

Ì ¾ É Ô Õ

Ö ¿ Ä Å Ã É Ã Â À
Ö ¿ Ä Å Ã É Ã Â À

× Ø Ù Ú Û Ü

Ý É ¾ Ì Ë ½ Ã

Ý É ¾ Ì Ë ½ Ã
Ý É ¾ Ì Ë ½ Ã

Ý É ¾ Ì Ë ½ Ã

× Ø Ù Ú Þ

½ ¾ ¿ À¿ À À

Ä Æ Á½ ¾ ¿ À
Ä Å ¾ É Ã

Ê Ã É Ë Ì Í Î

¿ À À
Á Â Ã Î Ï

Ð Ñ

Ò Ñ

Ó Ñ

Ì ¾ É Ô Õ

Ö ¿ Ä Å Ã É Ã Â À
ß à á á â

× Ø Ù Ú Û Ü

Â ¾ Ý

Ý É ¾ Ì Ë ½ Ã
ß à á á â

Ý É ¾ Ì Ë ½ Ã

¿ À ÀÄ Å ¾ É ÃÖ Æ ½Á É ã Ï
Þ Ñ

Ð Ñ

Ó Ñ

× Ø Ù Ú Û Ü

ß ä à å

æ á à ç ß è

á é Ø à è

Ò Ñ Þ Ñ

ê ë ì ê Ú ì

í

í

Á Â Ã È Ï

Figure 2.5: Example of stub adaptation. (a) The profile instruction in the stub block
C overcomes its threshold. (b) In response the orienteer updates the approximate region
by deploying the newly discovered basic block and updating instructions in block A′.

11

block. The removal of the branch in block A′ effectively merges A′ and B′ into a single
basic block, and introduces additional optimization potential such as enabling the removal
of branch computation code via dead-code elimination [10].

2.3 Hardware Components

Our framework targets a Chip Multiprocessor (CMP) that implements the MSSP execution
paradigm. The CMP is asymmetrical and is composed of many small slave cores and a single
large master core. In the studied implementation all cores execute the same ISA, but the
master additionally supports the profile instructions that are used by the program orienteer
to instrument the approximate code (Section 2.2.1) and the instructions necessary for the
MSSP paradigm (see Appendix A). The slave cores execute the original-program binary
when a corresponding approximate program region does not exist. In addition, the slave
cores verify execution of the approximate program (as specified by the MSSP paradigm)
and run the software components of the dynamic optimization framework (the program
orienteer and runtime compiler).

Each slave core in the CMP is augmented with a small hardware edge profiler. This
hardware edge profiler samples control-flow instruction outcomes and stores the information
in a central location for later retrieval by the Program Orienteer. It is not necessary for the
edge profiler to sample every instruction so long as it can create an accurate characterization
of program control-flow behavior. This research presumes the edge profiler statistically
samples control-flow outcomes. The exact implementation details of a hardware edge profiler
and profile storage are beyond the scope of this thesis, but examples of implementations
can be found in [11, 12].

Our framework periodically examines the profile data collected by hardware to find hot
loop seeds that exceed a threshold. As described in Section 2.1 these hot loop seeds are
provided to the program orienteer as a starting point for exploration. The source and target
of the hot loop seed provides the orienteer with reference points as to the boundaries of the
loop region. Because any cyclic control flow needs at least one backedge we are assured to
find all hot loops.

Chapter 3 expands upon the ideas introduced in this section by discussing how the pro-
gram orienteer addresses more realistic program examples. Chapter 4 presents experimental
results for our implemented framework.

12

3 ELABORATING EXAMPLES

This section offers additional insight into program orienteering with elaborating examples
that illustrate some of the features and complexities of our dynamic optimization framework.
In all cases, the orienteer strives to build a representation that accurately represents the
high-level organization of the program.

3.1 False Loop Seeds

In Section 2.1 we explained that our framework identifies hot loops in the program by de-
tecting hot loop seeds, which are backedges. While it is true that any loop must include a
backedge, the converse is not necessarily true. Occasionally, seeds identified by the frame-
work are not part of a loop at all. The backedge is simply an artifact of layout decisions
made by the compiler.

Figure 3.1 demonstrates one example of this situation that we have encountered in our
experiments. In the example control-flow fragment, separate exit paths in a function share
an exit block terminated by a return instruction. In the generated code, the path A→C
falls through to the return block, but the path B→C must branch to the block. Because
the compiler laid out block B after block C, the B→C branch is a backedge

î

ï ð

î ñ ò ó ô ñ õ ö õ ñ ÷ ø ù ú ñ û ó

ü ý þ ÿ ü �� � � � � ð

ï

î

Figure 3.1: Backedge that is not part of a loop. Block C is the return block for a
function and blocks A and B share the return path. Because block B is laid out after block
C, a backedge is generated that is not part of a loop.

13

If enough samples are collected for the B→C backedge, it will be detected as a hot loop
seed by our framework, and it will be passed to the program orienteer. The orienteer will
start exploring at the target of the loop seed (block C), but will be unable to reach the
source of the seed (block B) by following CFG edges. The program orienteer detects this
situation and flags the seed as a false loop seed. These false positives can waste resources
but will not lead to any incorrect conclusions.

3.2 Loops with Function Calls

Most hot program loops contain function calls, and our implementation of the program
orienteer extends the algorithm described in Section 2.1 in order to handle them. Whenever
the orienteer encounters a call instruction in the static program, it makes note of the call
target and continues along the return (i.e., fallthrough) path. After the orienteer finishes
exploring the control-flow in the loop, it recursively explores each call target and updates
the call graph in our IR.

3.3 Tail-Call Elimination

If the last operation in a function is a call to another function, called a tail call, a compiler
optimization known as tail-call elimination [10] can be applied. The optimization replaces
the call and return instructions that would otherwise implement the function call with a
branch instruction.

Tail-call elimination requires special consideration by the program orienteer. Because of
the optimization, the program orienteer will not immediately recognize the tail-call branch
as a function call. If we did not address this special case, the orienteer would find what
appears to be a single function having two different entry points (see Figure 3.2). Instead,
the orienteer should identify eliminated tail calls in order to develop a more accurate char-
acterization of the original program.

Figure 3.2 illustrates a scenario where the orienteer identifies two eliminated tail calls.
The program orienteer initially explores a function that contains the block B1 and its
successor D1. At some later time, the orienteer explores a second function that also contains
a block that has block D1 as its successor. This violates a requirement of our IR that a
basic block only be part of a single function, and it clues the orienteer in on the existence
of eliminated tail calls.

In response, the orienteer splits the function containing D1 into two separate functions.
The orienteer represents the eliminated tail-call in the IR by inserting special tail-call blocks.
A tail-call block replaces block D1 as block B1’s successor, and another tail-call block
replaces block D1 as block A2’s successor. In addition, the orienteer places block D1 into its
own function and updates the call graph as if the tail calls were normal call paths. When the
runtime compiler generates approximate code for the functions, it will reapply the tail-call
elimination and implement the tail call as a branch.

3.4 Trimming Dangling Paths

As discussed in Section 2.1, the orienteer explores all paths that have enough samples to be
considered active. In the case of a hot loop, several exit paths may be active and explored

14

� �

� �

	 �

 � �
 � � �

� �

� �

� �

 � �
 �

� �

� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � �

� � � � � � � � � � � � � � � � � �� � � � � � � � �

� � � � � � � � �

� � ! � ! ! "� # $! � � � � ! % & ' � � (� �) � � � � � � � �

* � + *
 +

� ' , - � �) � � ! � ! ! � �� (- � ' � , � � ! $ ' � , ' # . / �

Figure 3.2: Orienteering a tail call. (a) The orienteer detects the presence of an
eliminated tail call when it tries to add a CFG edge from block A2 (in function 2) to block
D1 (in function 1). (b) The orienteer remedies the situation by moving block D1 into its
own function (logically renaming it to A3) and inserting special tail-call blocks that denote
the control edges from functions 1 and 2.

by the orienteer (see Figure 3.3). These dangling paths are not part of the characterized
loop and will only be executed at most once per loop invocation (because they exit the
loop). In most cases, only a few basic blocks are part of dangling paths, but occasionally
larger dangling paths are found.

Rather than wasting available memory by approximating these paths, the orienteer
removes them from the characterization of the loop region. The orienteer can easily identify
and remove dangling paths. Any path that cannot reach the loop entry is not part of the
loop being explored, and the orienteer removes blocks on any such path and replaces them
with stub blocks. The resulting loop region will not contain any dangling paths (except for
stub blocks, which implicitly dangle).

3.5 Nested Loops

Often a hot loop is contained within a hot outer loop. In general, the inner loop’s backedge
will execute much more frequently and will be detected as a hot loop seed first. The orienteer
will explore the inner loop region and deploy approximate code for it. Later, the outer loop
backedge may be detected and sent as a hot loop seed to the orienteer.

As shown in Figure 3.4, while exploring the outer loop, the orienteer will eventually
encounter a CFG edge to a block in the inner loop region. The symptoms are similar to
the tail-call elimination case described in Section 3.3, but differs because the CFG edge
targets the loop header of a loop region rather than the middle of a function. The orienteer
recognizes CFG edges that attempt to target the loop header of an explored loop, and will
decide to subsume the inner loop’s basic blocks into the outer loop region. In addition, all

15

0

1

2

3 4 5 6 7 8

9

:

0

1

2

3 4 5 6 7 8

3 4 5 6 9

3 4 5 6 :

; < = ; 6 =

Figure 3.3: Dangling path removal. (a) The orienteer included blocks C and E in the
loop region because the profile indicated that they are on active paths. However, neither
block can reach the loop entry (block A) and therefore are on dangling paths. (b) The
dangling blocks are replaced with stubs by the orienteer.

>

?

@

A B C D E

A B C D F G

H

>

?

@

A B C D E

H

I

A B C D F G

J K L J D L

Figure 3.4: Subsuming an inner loop. (a) During exploration of a new region the
orienteer encounters the loop header of an existing loop region. The orienteer subsumes the
existing region into the new region and continues exploration at former stubs from the loop
region. (b) The final IR after an outer loop region subsumes an inner loop region.

16

stub paths in the inner loop are reexamined, because the paths may need to be included in
order to completely explore the outer loop region.

3.6 Indirect Branches

During exploration, the orienteer handles indirect branches similarly to how it handles con-
ditional, direct branches. When the orienteer encounters an indirect branch, it explores
any profiled targets with enough collected samples, and stubs the remaining profiled tar-
gets. The orienteer then maps each original-program indirect target to its corresponding
approximate-program target in the MSSP map table (the reasons for indirect-target map-
ping are discussed elsewhere [8]).

However, the hardware profiler may not have samples for all the indirect branch targets
(either because of sampling error or because of unexecuted paths). If one of these indirect
branch targets becomes active after approximate code has been generated for the region,
our framework does not currently have a mechanism to detect it. Our preliminary experi-
ence suggests that this situation occurs relatively infrequently, but will limit our dynamic
coverage in the long run.

We have developed a solution to this problem, but have not implemented it for this
work. Our solution involves defining a default stub target for each indirect branch in the
approximate program and defining a default mapping entry for the stub in the MSSP map
table. If the approximate program tries to execute an unexplored indirect target, our
framework will redirect the program to the default stub. The default stub will be profiled
with a variation of our profile instruction that samples the intended original-program target
and triggers the orienteer if enough samples are collected (at which point the orienteer can
either choose to explore or stub the path).

3.7 Lessons Learned

In designing the orienteer to address the described examples, we found it useful to adopt
several guidelines. The guidelines fulfill a dual purpose of both preventing unexpected
program constructs from silently passing through the orienteer and enabling the orienteer
to develop a meaningful IR from the program.

The first guideline we adopted was to design our IR with rules that allow the orienteer
to detect nontrivial program constructs. For instance, the rule that each basic block in
the IR is only a part of a single function helps the orienteer identify eliminated tail calls
(Section 3.3) and nested loops (Section 3.5).

Another guideline requires that the orienteer implement detailed error reporting if it does
not find a region corresponding with a given hot loop seed. By collecting and analyzing a
log of errors we were able to identify false loop seeds and redesign the orienteer to identify
and ignore them (as described in Section 3.1).

In general, our guidelines follow the belief that the program orienteer should log any
unexpected program characteristics for later analysis. Programs can be written in many
different and sometimes convoluted ways, especially when considering compiler-optimized
code and libraries implemented in hand-written assembly. Rather than designing the orien-
teer to address every imaginable program construct, we instead analyze the log generated

17

by the program orienteer in order to investigate and implement solutions for unexpected
cases.

18

4 EXPERIMENTAL RESULTS

This section presents an experimental evaluation of our program orienteering framework.
The experiments are simulation-based, and a discussion of our methodology follows in Sec-
tion 4.1. Results are then presented and discussed in Section 4.2.

4.1 Methodology

Our simulator implements the MSSP execution paradigm for the Alpha ISA. The simulator
models an asymmetric CMP containing many small slave cores and a single large master
core. Each core is simulated with a cycle-accurate, event-driven timing model. The sim-
ulator also models the on-chip interconnection network latencies of the CMP (although it
currently presumes infinite network bandwidth). Table 4.1 details the simulation parame-
ters used in our processor models.

Table 4.1: Processor Simulation Parameters

Parameter Value

Number of Processors Slave: 8
Master: 1

Pipeline Slave: 2-wide, 6-stage out-of-order
Master: 4-wide, 8-stage out-of-order

Branch Predictor Slave: 8 KB, 4-bit history gshare, 32-entry RAS
Master: 32 KB, 8-bit history gshare, 32-entry RAS

L1 Instruction Cache Slave: 32 KB, 2-way, 64-byte line size, 8 MSHRs
Master: 64 KB, 2-way, 64-byte line size, 8 MSHRs

L1 Data Cache Slave: 64 KB, 16-way, 256-byte line size, 8 MSHRs
Master: 64 KB, 2-way, 64-byte line size, 8 MSHRs

Unified L2 Cache Shared: 1 MB, 8-way, 64-byte line size, 512 MSHRs

Instruction Queue Slave: 32 entries; Master: 128 entries

Functional Units Slave: 2 Int, 1 Load/Store, 1 FP
Master: 4 Int, 4 Load/Store, 2 FP

Interconnect Latency 5 cycles (one way)

Memory Network Latency 100 cycles (one way)

The software mechanisms of the program orienteering framework are modeled as a com-
bination of three effects. First, the hardware-collected profile data is scanned for new hot
loop seeds every 10 000 cycles, which is an imprecise but likely conservative estimation of
a real system. Second, the program orienteering software explores and deploys each new

19

region after a fixed latency of 200 000 cycles, which allots 1600 cycles of work per static
instruction explored (on average). Third, when the approximate code regions are gener-
ated, we model the L2-cache updates resulting from the orienteer pushing the approximate
code to memory. We believe that the result is a conservative latency model for program
orienteering behavior.

Our simulator does not currently model the storage mechanisms used by the hardware
edge profiler or software profiling instructions. However, the profilers utilize statistical
sampling (which reduces throughput requirements on the hardware), and the profile data
used a maximum of 11 KB of storage for our runs (4 KB on average). As a result, we do
not believe that an accurate model of hardware constraints would dramatically affect our
collected results or would cause us to change the design of the program orienteer.

Table 4.2 lists the parameters used for the program orienteer. The hardware profiler
sampling rate determines the average number of samples collected per branch visited. We
randomly offset the actual sampling rate from the specified value to prevent pathological
errors in programs that exhibit periodic behavior exactly in sync with the sampling rate.

Table 4.2: Program Orienteer Framework Parameters

Parameter Value

Hardware Profiler Sampling Rate 1 sample / 32 branches

Hot Loop Seed Scan Interval 10 000 cycles

Hot Loop Seed Threshold 100 samples

Hot Loop Orienteering Latency 200 000 cycles

Stub Adaptation Latency 50 000 cycles

Active Path Bias Threshold 1%

Profile Instruction Sampling Rate Stub: 1 sample / 1 visit
Predecessor: 1 sample / 1 visit

Profile Instruction Threshold Stub: 10 samples
Predecessor: 1 000 samples
Effective Bias: 1%

The active bias threshold specifies the minimum relative bias that a profiled path must
have so that the orienteer will consider it active. The orienteer will insert stub blocks for
insufficiently biased paths.

For this work, the profile instruction parameters control the behavior of the stub adap-
tation feature described in Section 2.2.2. Recall that the orienteer inserts a pair of profile
instructions on each stub path: one into the stub block and one into the predecessor of the
stub block. We set the predecessor profile instruction to trigger the removal of the stub path
if it collects 10 000 samples at a sampling rate of 1 sample per visit. We set the stub profile
instruction to trigger exploration of the stub path if it collects 10 samples at a sampling
rate of 1 sample per visit. Therefore, we effectively configure the orienteer to remove stub
paths that have less than a 1% bias.

In order to evaluate the program orienteering framework, we simulated 100 million
instructions from the SPECint2000 benchmarks. For each benchmark we skipped the first
5 billion instructions in order to avoid startup code. Our framework targets long-running
applications, and startup code tends to exhibit drastically different behavior than a program
in steady-state.

20

4.2 Results

As mentioned in Section 1.2, any successful dynamic optimization framework must be able
to identify the hot regions of a program’s execution. In addition, the framework must be able
to deploy code that correctly represents these hot regions. We found that our framework
meets both criteria.

We first present coverage results for the baseline system described in Section 4.1. Fig-
ure 4.1 shows the percentage of dynamic instructions executed inside approximate code
regions (dynamic coverage) On average, our baseline framework achieves 94% coverage,
which implies that it is successfully finding the hot program regions.

0

20

40

60

80

100

C
o

v
er

a
g

e
(%

)

 b
aselin

e

 b
aselin

e

 b
aselin

e

 b
aselin

e

 b
aselin

e

 b
aselin

e

 b
aselin

e

 b
aselin

e

 b
aselin

e

 b
aselin

e

 b
aselin

e

 b
aselin

e

 b
aselin

e

 d
isab

led

 d
isab

led

 d
isab

led

 d
isab

led

 d
isab

led

 d
isab

led

 d
isab

led

 d
isab

led

 d
isab

led

 d
isab

led

 d
isab

led

 d
isab

led

 d
isab

led

 bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr avg

Figure 4.1: Dynamic coverage of program orienteering framework. Compares
coverage of the baseline framework with the framework with stub adaptation disabled.

Also shown in Figure 4.1, are results for our system with stub adaptation disabled.
As discussed in Section 2.2.2, stub adaptation enables the orienteer to explore paths that
were deemed cold based on the initial hardware-collected profile. In general the initial
hardware-collected profile correctly identifies removable cold paths, but in several bench-
marks disabling stub adaptation causes a drop in dynamic coverage. For example, crafty
suffers a 23% drop in dynamic coverage.

Figure 4.2 compares the dynamic coverage over cycle time in the benchmark crafty

for our baseline framework versus our framework with stub adaptation disabled. For both
configurations, coverage rises sharply after approximately 5 million cycles when the orienteer
discovers the hot program region.1

When stub adaptation is enabled, coverage continues to rise past 90%. However, cov-
erage eventually tapers off at approximately 70% when stub adaptation is disabled. The
coverage problem occurs because the hot program region is a recursive function, which we
investigated to be Search(...), containing a large number of executed paths. When the
orienteer explores the region, a large number of the paths are stubbed because insufficient

1The curve for enabled stub adaptation ends abruptly because the simulation completes in less cycles. The
higher dynamic coverage means that the program spends most of its time being executed in the approximate
program on the large master processor. The performance improvement comes from two factors: fewer shifts
between sequential mode and MSSP mode, and the more aggressive design of the master processor.

21

20000000 40000000 60000000

Cycle Time

0

20

40

60

80

100

P
er

ce
n

ta
g
e

Stub Adaptation

Adaptation Disabled

Figure 4.2: Dynamic coverage timeline comparison for crafty.

profile samples in the hardware-collected profile make them appear cold. These stub paths
are sufficiently executed that the orienteer, with stub adaptation enabled, will explore and
include them in the approximate program. However, without stub adaptation the paths
are left stubbed, which limits coverage because of frequent exits from MSSP mode (see
Appendix A).

As a result, stub adaptation allows us to tune the hardware profiler, using the hot loop
seed threshold, such that it quickly collects an initial profile. This approach is sufficient
for most hot program regions, but will incorrectly characterize regions with a large number
of executed paths such as the recursive function Search(...) in crafty. Alternatively,
we could have set a larger hot loop seed threshold such that the hardware profiler collects
more samples in the initial profile. However, setting the threshold higher delays hot loop
detection and adversely affects coverage in most benchmarks.

Figure 4.3 shows dynamic coverage results for several settings of the hot loop seed
threshold (with stub adaptation disabled in all cases). Increasing the hot loop seed threshold
worsens dynamic coverage in the majority of the benchmarks because it is, in general, more
beneficial to identify a hot program region early than it is to collect more samples. Increasing
the hot loop seed threshold initially improves the dynamic coverage results for crafty, but
further threshold increases delay hot loop detection enough to adversely affect coverage. As
a result, we chose to use a lower hot loop seed threshold and to rely on stub adaptation in
order to correct for inaccuracies in the initial profile.

In addition to allowing the orienteer to explore active stub paths, stub adaptation also
enables the orienteer to identify removable cold paths. If a path is less than 1% biased, the
orienteer will remove the path from the approximate program and remove the associated
branch (if it is a conditional direct branch). Figure 4.4 presents the results for removing
these cold paths. It shows that, on average, the approximate code generated by our frame-
work covers 96% of the total dynamic branches, and that, by using stub adaptation, the
framework was able to speculatively remove highly biased branches accounting for 37% of
the total dynamic branches.

22

0

20

40

60

80

100

C
o

v
er

a
g

e
(%

)

 1
0

0

 1
0

0

 1
0

0

 1
0

0

 1
0

0

 1
0

0

 1
0

0

 1
0

0

 1
0

0

 1
0

0

 1
0

0

 1
0

0

 1
0

0

 2
0

0

 2
0

0

 2
0

0

 2
0

0

 2
0

0

 2
0

0

 2
0

0

 2
0

0

 2
0

0

 2
0

0

 2
0

0

 2
0

0

 2
0

0

 4
0

0

 4
0

0

 4
0

0

 4
0

0

 4
0

0

 4
0

0

 4
0

0

 4
0

0

 4
0

0

 4
0

0

 4
0

0

 4
0

0

 4
0

0

 8
0

0

 8
0

0

 8
0

0

 8
0

0

 8
0

0

 8
0

0

 8
0

0

 8
0

0

 8
0

0

 8
0

0

 8
0

0

 8
0

0

 8
0

0

 bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr avg

Figure 4.3: Sensitivity analysis of the hot loop seed threshold. The numbers below
each bar denote the hot loop seed threshold value used.

b
zip

2

crafty

eo
n

g
ap

g
cc

g
zip

m
cf

p
arser

p
erl

tw
o
lf

v
o
rtex

v
p
r

av
g

0

20

40

60

80

100

P
er

ce
n

ta
g
e

(%
)

Branch Coverage

Wrong Path

Correct Path

Figure 4.4: Speculative branch removal statistics.

23

The removed branches are still represented in the original program, and thus slave
executions will still execute the branch. The slave can execute the removed path, but if
it does it indicates an incorrect speculative branch removal. We keep track of the number
of times this event occurs and graph it as the wrong path percentage in Figure 4.4. The
situation is so rare that the wrong path percentage is not even visible on the graph. In
general, a wrong path event will cause a slave misspeculation, so we intentionally picked stub
profiling thresholds such that wrong path events would be minimized, while still enabling
the orienteer to remove highly biased branches.

The system described thus far does has not used the sampling rate field in the profiling
instruction. We tested the sensitivity of our framework to using sampled profile instructions
in stub predecessor blocks. Figure 4.5 shows the branch removal results for several different
sampling rates. Overall the sampling rate has a negligible result on the branch removal
accuracy, and reduces the number of profile counter updates significantly. Note that the
sampling rates are all powers of 2. This is because the sampling rate is expressed as 1/2n

where n is a value encoded in the profile instruction.

0

20

40

60

80

100

P
er

ce
n

ta
g

e
(%

)

 1 1 1 1 1 1 1 1 1 1 1 1 1 6
4

 6
4

 6
4

 6
4

 6
4

 6
4

 6
4

 6
4

 6
4

 6
4

 6
4

 6
4

 6
4

 1
2

8

 1
2

8

 1
2

8

 1
2

8

 1
2

8

 1
2

8

 1
2

8

 1
2

8

 1
2

8

 1
2

8

 1
2

8

 1
2

8

 1
2

8

 bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr avg

Figure 4.5: Sensitivity analysis of profile instruction sampling rate. The numbers
below each bar denote the predecessor profile instruction sampling rate used.

However, we believe that stub adaptation implements a naive use of the flexibility pro-
vided by the program orienteer and profile instructions. Stub adaptation uses two profile
instructions per branch that the orienteer is observing, but the orienteer could optimize the
number of profile instructions necessary by placing counters more intelligently. In general,
the information provided by a particular profile instruction can be derived from other profile
instructions in the region.

In addition, stub adaptation does not use the more flexible features of our profile instruc-
tion. The profile instruction encodes a condition field (analogous to a branch condition)
that causes the instruction to only increment its associated counter only when the condi-
tion has been met. The condition field could be used to compare two register operands and
update a counter predicated on the result. Such flexibility in the profile instruction enables
techniques such as memory address profiling and value profiling. However, stub adaptation
simply sets this field to an unconditional encoding so that each profile instruction increments
a counter every time it gets executed (although it can offset this with sampling).

24

Nevertheless, even our naive use exposes significant optimization potential by identifying
highly biased branches that the runtime compiler can remove. After the runtime compiler
removes a highly biased branch, it can merge the source and target basic blocks, which
exposes additional optimization opportunity to passes such dead-code elimination and reg-
ister allocation [10]. The result is an approximate program containing optimizations not
possible with traditional compiler optimizations alone.

25

5 CONCLUSION

Dynamic FDO frameworks offer significant optimization benefits when coupled to task-level
speculation hardware such as a processor implementing the MSSP paradigm. However, the
benefits are speculative and have commensurate misspeculation penalties. Therefore, the
framework must take great care when speculatively optimizing a program. The framework
should be confident that the program behavior presumed by a speculative optimization
matches actual program behavior in the common case.

Our proposed mechanism, which we call the program orienteer, does just that. It uses a
combination of hardware and software to accurately characterize the hot regions of an exe-
cuting program. In addition, it represents its characterization in terms of an intermediate
representation that can be used by a runtime compiler. We have shown how the program
orienteer fits into a dynamic FDO framework, how it uses hardware and software to accom-
plish its task, and how the information it provides can enable effective use of speculative
compiler optimizations.

We are far from completing the implementation of our FDO framework, but the lessons
learned so far hint that the program orienteer will play an integral role in our envisioned
system. Namely, we expect that the program characterization provided by the orienteer
will enable a suite of approximation and optimization transformations to generate a highly
optimized approximate program.

In addition, the program orienteer needs further investigation itself. This work primarily
focuses on generating an approximate program based on the identification of highly biased
branches. Characterizing other aspects of program behavior would likely be beneficial as
well. For example, identifying load and store pairs that either almost never alias or almost
always alias would aid traditional compiler optimizations such as code scheduling and reg-
ister allocation of memory variables. Even our approximation of highly biased branches
only addresses a subset of a program’s control flow, and other classes of branches may offer
additional approximation potential. For example, we have found branches that, over time,
vary between unbiased and biased, but exhibit biased behavior for long stretches that could
be temporarily approximated. The presented program orienteer does not characterize such
branches, and thus such approximations currently elude our framework.

Nevertheless, the presented program orienteer conceptually validates our belief that
such a mechanism can extract dynamic program behavior in a form that is beneficial to a
runtime compiler. We will build on the system developed for this work to address the many
remaining issues, and can do so with confidence that our basic ideas are plausible.

26

APPENDIX A

MSSP OVERVIEW

As the name suggests, a Master/Slave Speculative Parallelization (MSSP) execution com-
prises two program executions: the master and the slave. The master execution specu-
latively runs ahead and is responsible for the performance of the overall execution. The
slave execution, which is orchestrated by the master, is responsible for the correctness of
the whole execution and verifies the master’s speculation.

The master execution is performed by a single master processor. The master executes
a version of the program (the approximate program) where predictable computations are
removed. The predictable behaviors are removed via approximation transformations; unlike
traditional compiler transformations which must preserve all potential program behaviors,
approximation transformations are allowed to violate correctness. By leveraging an accurate
program characterization, we can apply these transformations such that the common case
performance is improved and correctness violations are minimized. In addition, approxima-
tion transformations typically create new opportunities for traditional optimizations, so our
envisioned system follows approximation with a suite of traditional compiler optimizations.

The result of approximation is a program that runs substantially faster than the original
program but with no guarantees of correctness. To ensure correctness, we complement the
master’s execution of the approximate program with an execution of the original program
to verify the predictions. The key challenge is to perform the verification in a manner that
it does not become the bottleneck. MSSP parallelizes the execution of the original program
onto many slave processors to achieve the throughput necessary to keep up with the master.

The execution of the original program is split into segments, called tasks. To enable these
tasks to execute independently and in parallel, the master execution is used to predict the
sequence of tasks (i.e., the starting program counter (PC) of each task) and the live-in values
to these tasks. In fact, generating these predictions is the master’s only responsibility. The
register writes and stores performed by the master are held in a special checkpoint buffer,
and the predictions are generated by logically taking a checkpoint of the master’s state at
the point corresponding to the beginning of the task. When the master’s state is no longer
necessary it is discarded; the master never directly modifies the architected state.

The approximate program specifies the beginning of a task with a fork instruction that
encodes the starting address for a slave execution. When the master executes the fork

instruction it spawns a slave task, which begins execution at the specified address. The
master then continues executing along the fallthrough path of the fork instruction.

In practice, the slave’s starting address resides in the approximate program and specifies
the beginning of a verify block. The verify block is terminated by a verify instruction

27

that redirects the slave to the task’s original program starting address. After the slave
executes the verify instruction it starts collecting live-in and live-out values so that it can
verify the master’s execution. The verify block enables certain classes of code scheduling
optimizations, and is covered in detail elsewhere [8].

CHKPT

FORK

FORK

FORK

P1 P2 P3P0

A’

B’

C’

Task A

Task B

Task C

Verify
Commit State

Misspeculation

Restart Task C

C’

Bad Checkpoint

..
.

1

2

3

4

7

Fork Task

Execute Task

8

Squashed

T
im

e

Commit State

Architected

State

live-ins, spec. stores

Verify

Detected

live-ins, spec. stores 6

5

Figure A.1: Master processor distributes checkpoints to slaves. The master—
executing the approximate program on processor P0—assigns tasks to slave processors,
providing them with predicted live-in values in the form of checkpoints. The live-in values
are verified when the previous task retires. Misspeculation, due to incorrect checkpoint,
causes the master to be restarted with the correct architected state.

Figure A.1 illustrates an MSSP execution with four processors. One processor (P0) is
allocated to be the master processor, and the remaining processors (P1, P2, and P3) are
slaves that begin the example idle. The master executes the approximate program and,
at a fork, spawns a new task on an idle slave processor and provides it access to the
buffered checkpoint values. At annotation 1© in the figure, the master processor spawns
Task B onto processor P2. P2 begins executing the task after some latency due to the
interprocessor communication 2©. P0 continues executing the approximate program segment
that corresponds to Task B, which we refer to as Task B′ 3©.

As the slave Task B executes, it will read values that it did not write (live-in values)
and perform writes of its own (live-out values). If a corresponding checkpoint value is
available, it is used for the live-in value; otherwise, the value is read from the currently
visible (architected) state. As the slave tasks are speculative—they may be using predicted
live-in values—their live-out values cannot be immediately committed: we have to ensure
the live-in values are correct before committing the live-outs. To this end, we record the
task’s live-in and live-out values. When all previous tasks have completed and updated
the architected state, the live-ins can be compared with the architected state. To avoid
interprocessor communication in the verification critical path, our implementation performs

28

this comparison at the (banked) shared level of the cache hierarchy. Thus, when the task
is complete 4©, P2 sends its live-in and live-out values to the shared cache. If the recorded
live-in values exactly correspond to the architected state, then the task has been verified
and can be committed, and the architected state can be updated 5© with the task’s live-out
values.

If one of the recorded live-in values differs from the corresponding value in the architect
state (e.g., because the master wrote an incorrect value 3©), this mismatch will be detected
during verification. On detection of the misspeculation 6©, the master is squashed, as are
all other in-flight tasks. At this time, the master is restarted at C′ 7© using the current
architected state. In parallel, nonspeculative execution of the corresponding task in the
original program (Task C) begins 8©.

In this work, the approximate program is generated by a dynamic FDO framework.
As such, when the program starts no approximate program will exist and execution will
begin with a sequential execution of the original program. When the framework generates
an approximate program region, it will also update a MSSP map table that maps original
program addresses to entry points in the approximate program. When the sequential ex-
ecution encounters an original program address that maps into the approximate program,
execution will transition into MSSP execution mode. Entry points are typically placed at
the beginning of loops and functions.

The program’s execution will stay in MSSP execution mode until either a misspecula-
tion causes a restart1 or the master executes a master end instruction. The master end

instruction terminates the master execution without causing a misspeculation. After all
the remaining speculative slave tasks are verified, execution resumes in sequential execution
mode. Our framework places master end instructions on paths that are suspected to be
cold, so that the paths can be stubbed out of the approximate program. However, if the
stub path is needed, a misspeculation will not occur, and, instead, the system will smoothly
transition into sequential execution mode.

In conclusion, MSSP can bring a significant amount of silicon real estate to bear on the
execution of a sequential program, even in technologies that are communication limited.
The individual cores are sized for efficient communication and all of the latency intoler-
ant communication occurs within the processor cores. The intercore communications only
contribute to the latency of verifying the predictions made by the execution of the approx-
imate program; if the approximate program is constructed such that these predictions are
accurate, this latency can be effectively tolerated.

1Actually execution will stay in MSSP mode even after a restart if a map table entry for transitioning
from the original program to the approximate program exists at the restart address.

29

REFERENCES

[1] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S. B. Yadavalli, and
J. Yates, “FX!32: A profile-directed binary translator,” IEEE Micro, vol. 18, no. 2, pp.
56–64, Mar 1998.

[2] R. Cohn, D. Goodwin, and P. G. Lowney, “Optimizing Alpha executables on Windows
NT with Spike,” Digital Technical Journal, vol. 9, no. 4, pp. 3–20, 1997.

[3] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber, and
J. Mattson, “The Transmeta Code MorphingTMsoftware: Using speculation, recovery
and adaptive retranslation to address real-life challenges,” in 1st IEEE/ACM Symp.
Code Generation and Optimization, San Francisco, CA, Mar 2003, pp. 15–24.

[4] K. Ebcioglu and E. R. Altman, “DAISY: Dynamic compilation for 100% architectural
compatibility,” in Proceedings of the 24th Annual International Symposium on Com-
puter Architecture, June 1997, pp. 26–37.

[5] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A transparent dynamic opti-
mization system,” in Proceedings of the SIGPLAN 2000 Conference on Programming
Language Design and Implementation, June 2000, pp. 1–12.

[6] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang, and Y. Zemach,
“IA-32 execution layer: A two-phase dynamic translator designed to support IA-32 ap-
plications on Itanium c©-based systems,” in Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, Dec 2003, pp. 191–202.

[7] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney, “Adaptive optimization in
the Jalapeño JVM,” in Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages and Application (OOPSLA), Oct. 2000, pp. 47–65.

[8] C. Zilles, “Master/slave speculative parallelization and approximate code,” Ph.D. dis-
sertation, Computer Sciences Department, University of Wisconsin–Madison, Aug.
2002.

[9] C. Zilles and G. Sohi, “Master/slave speculative parallelization,” in Proceedings of the
35th Annual IEEE/ACM International Symposium on Microarchitecture, Nov. 2002,
pp. 85–96.

[10] S. S. Muchnick, Advanced Compiler Design and Implementation. San Francisco, CA:
Morgan Kaufman, 1997.

30

[11] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S.-T. Leung, R. Sites, M. T.
Vandevoorde, C. A. Waldspurger, and W. E. Weihl, “Continuous profiling: Where have
all the cycles gone?” in Proc. 16th Symposium on Operating System Principles, Oct.
1997, pp. 1–14.

[12] T. H. Heil and J. E. Smith, “Relational profiling: Enabling thread level parallelism in
virtual machines,” in Proceedings of the 33rd Annual IEEE/ACM International Sym-
posium on Microarchitecture, Dec. 2000, pp. 281–290.

31

