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Abstract

Aggressive software speculation holds significant poten-
tial, because it enables program transformations to reduce
the program’s critical path. Like any form of speculation,
however, the key to software speculation is employing it only
where it is likely to succeed. While mechanisms for con-
trolling hardware speculation (e.g., saturating countersup-
dated after each instance) are well understood, these tech-
niques do not translate directly to software techniques be-
cause changing a speculation requires changing the code.
As it stands, the dominant software speculation control
technique, non-reactive profile-guided optimization, lacks
the robustness to support aggressive speculation.

The primary thesis of this paper is that software spec-
ulation can be made to be robust by adding a reactive
controller that can dynamically adjust the speculation. We
make two primary observations about such systems: 1) re-
active control systems can select behaviors on which to
speculate with performance that equals or exceeds self-
training, and 2) such control systems are remarkably la-
tency tolerant. Although reactivity is required, it can be
done at a low frequency; latencies of hundreds of thou-
sands, or even millions of cycles, can be tolerated for most
actions. Together these two characteristics imply that ro-
bust aggressive software speculation is a realistic goal.

1. Introduction

Programs are seldom creative; they tend to exhibit the
same behavior over and over. This repetition has been well
documented across a variety of program behaviors (e.g.,
branches [13], memory dependences [10], and values [8])
and has made viable a broad range of speculative optimiza-
tions (i.e., optimizations that improve one case at the ex-
pense of another). The key to applying such speculative op-
timizations is in knowing which program behaviors will be
frequently exhibited and which will not.

Speculation techniques can be categorized by whether
the optimization is applied before or after an instruction has

been fetched, categories we will refer to as software and
hardware speculation, respectively.

1. Hardware speculation typically involves tracking a
program behavior using one or more hardware ta-
bles and consulting these tables in the front-end
of the pipeline to decide whether (and how) to ap-
ply the optimization. If an optimization is selected,
it is applied to the in-flight instructions as they pro-
ceed down the pipeline. The advantages of hardware
speculation are that it is responsive to changes in pro-
gram behavior and can apply the optimization to
selective instances, but it requires that the optimiza-
tion can be applied as the instructions travel down the
pipeline.

2. In software speculation, the speculation is encoded di-
rectly into the instruction stream when the code is gen-
erated; many such mechanisms have be proposed, in-
cluding EPIC/VLIW’s advanced loads [9], rePLay’s
assertions [4], and Master/Slave Speculative Paral-
lelization’s (MSSP) approximations [20]. The two
main advantages of this approach are: 1) the pro-
gram can be transformed assuming the speculations
are correct, and 2) the optimizations need not be ap-
plied on each dynamic instance as it travels down the
pipeline. However, software speculation is not as reac-
tive as hardware speculation, as there is often a latency
associated with applying (or removing) an optimiza-
tion due to the need for recompilation.

We believe these forms of speculation are complemen-
tary in nature and have distinct strengths. Specifically, soft-
ware speculation (the focus of this paper) appears to be well
suited for targeting highly-biased program behaviors, where
such speculation enables program transformations that re-
duce the critical path or improve parallelism. We demon-
strate that there is substantial opportunity for such optimiza-
tions in Section 2. The key challenge to exploiting aggres-
sive software speculation lies in effectively controllingthe
speculation.

By and large, the dominant technique for controlling
software speculation has been profile-directed optimization,



operated in an open loop (i.e., no feedback control on mis-
speculation rate). Because of the repetitiveness of programs,
a profile of the program (either from a previous run or a por-
tion of a current run) can be used, with reasonable accuracy,
to predict the program’s future behavior. In most systems
(both static compilers and dynamic translators), code is op-
timized after a single profiling phase, with no further mon-
itoring of program behavior. Where run-time behavior dif-
fers from the profile, a misspeculation cost is incurred. We
demonstrate, in Section 2.2, that these techniques lack ro-
bustness and miss opportunity for correct speculation.

In this paper, we demonstrate that both the effectiveness
and robustness of software speculation can be improved by
adding a reactive system to control the speculation. In Sec-
tion 3, we describe a simple, yet effective, model for con-
trolling speculation that can consistently achieve misspecu-
lation rates of less than one-half of a percent. Such misspec-
ulation rates are conducive to aggressive speculation be-
cause misspeculation penalties that are two orders of mag-
nitude greater than the benefit of correct speculation can be
tolerated. In fact, the results achieved by our reactive sys-
tem are comparable or even exceed those achievable by self-
training (i.e., profiling and evaluating using the same data
set) in a static, non-reactive system.

As the utility of a reactive control systemcanbe demon-
strated in architecture-independent manner, we have en-
deavored to do so. In this way, our results can be interpreted
in other contexts where the benefit and costs of speculation
are different. Nevertheless, it is important to demonstrate
that the presence or absence of reactive control can have
a first-order impact on performance. In the final section of
this paper, we provide timing simulations of an MSSP ma-
chine that validate the observations from our abstract model
and show that reactiveness in the speculation control pol-
icy can make the difference between speedups and slow-
downs (Section 4).

In summary, we make three primary contributions:

1. In the context of branches, we perform a characteri-
zation of highly-biased program behaviors, including:
i) estimating the optimization opportunity, ii) explor-
ing the relationship between initial and overall behav-
ior, and iii) providing examples and explanations of in-
stances with time-varying behavior.

2. We present a simple reactive control policy that ex-
ploits most of the benefit of highly-biased branches.

3. We demonstrate that the model is insensitive to many
of its parameters, most notably latency, making it con-
ducive to implementation.

2. Motivation

This work was motivated by our work to develop a dy-
namic optimizer for the MSSP execution paradigm (a brief
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Figure 1. An illustrative MSSP code approximation
example: before (a) and after (b) approximation. Pro-
files indicate the first if statement is highly biased to be
true and the values of x.d are frequently 32. MSSP al-
lows generation of speculative code (without checks) as-
suming these behaviors, leading to a significant simplifi-
cation of the code.

overview of MSSP is included in Section 4). MSSP pro-
vides an external verification mechanism that allows its
master thread to execute unchecked speculative code. That
is, speculative optimizations (based on recurring program
behaviors) can be applied to the code without the need
for checking or fixup code. As a result, MSSP code typi-
cally has a shorter critical path and is smaller (both stat-
ically and dynamically) than corresponding traditionally
compiled code (with or without checked speculative opti-
mizations (e.g., IA-64). An illustrative example is provided
in Figure 1.

When its speculations prove correct, MSSP achieves the
performance of the speculative code, but when a misspec-
ulation occurs it often takes hundreds of cycles to be de-
tected. Thus, for each speculation there is a modest benefit
for being correct and a large penalty for being incorrect, ne-
cessitating a very low misspeculation rate (e.g., less than
1 percent). This requirement holds for aggressive software
speculation in other contexts (e.g., rePLay [4] and thread-
level speculation [18]).

This section serves to demonstrate that there is signif-
icant opportunity for aggressive software speculation and
motivate the need for reactive speculation control systems
(as described in Section 3) to harvest this opportunity.
Due to space constraints, we have chosen to concentrate
on one program behavior–conditional branches–throughout
this paper. This choice both provides some context for the
results we present (as many readers will be familiar with
the branch behaviors of the SPEC2000 integer benchmarks)
and is important because branches remain one of the most
important constraints on the optimization of non-numeric
programs. We have confirmed that these results are qualita-
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Figure 2. Correct/incorrect speculation trade-off demonstrates si gnificant opportunity for software speculation.
The line represents the pareto optimal correct speculation rate that could be achieved for a given misspeculation rate with
perfect knowledge of future branch outcomes (self-training). •: a 99% threshold which is usually at the knee of the curve.
As discussed in Section 2.2, △: results from using a training input (using a 99% threshold), +: results from using initial
behavior to predict bias (using a 99% threshold and initial periods of 1k, 10k, 100k, 300k, and 1 million executions). Points
that fall off the graph are labelled with their (x,y) location.

tively consistent with other program behaviors (e.g., loads
that produce invariant values and memory dependences).
This comes not as a surprise given the interaction between
control flow and data flow in non-numeric programs.

In Section 2.1, we demonstrate that there is substan-
tial opportunity for speculation that does not require the
fine-grain control provided by hardware speculation. Then
we explore (in Section 2.2) the challenges facing exist-
ing mechanisms to robustly exploit this opportunity. We
conclude this section with a description of branches that
make classification difficult, demonstrating that in many
cases there is nothing to distinguish them from truly biased
branches.

2.1. Opportunity for Software Speculation

The potential for aggressive software speculation can be
seen by looking at branch bias across whole program runs.
In software speculation, a decision to speculate or not is
made when the code is generated. In making this decision,

the ratio of correct to incorrect speculations must be consid-
ered. For a branch, this ratio is the branch’s bias; for exam-
ple, removing the conditional branch in Figure 1 will ben-
efit the execution whenever the branch is not taken and a
misspeculation occurs whenever the branch is taken. Spec-
ulation will improve performance whenever the aggregate
benefit exceeds the aggregate penalty:

(correct preds×benefit) > (incorrect preds×penalty)

Thus speculation should be applied to all branches whose
bias (or more precisely the ratio of correct-to-incorrect
speculation) exceeds the ratio of the misspeculation penalty
to the correct speculation benefit:

correct preds

incorrect preds
>

penalty

benefit

We can get a sense for the amount of opportunity for
software speculation by looking at the cumulative distribu-
tion of branch bias. In Figure 2, we have sorted branches
by their bias and plotted the Pareto optimal trade-off be-
tween correct and incorrect speculation. That is, as we move



away from the the origin, we are speculating on an increas-
ing number of branches, yielding more correct speculations
(y axis) as well as more misspeculations (x axis). On each
curve, we have marked (with a circle) the point that rep-
resents speculating on all branches with biases exceeding
99%; for example, the point ingcc indicates that over 70%
of branches could be eliminated with misspeculation rate of
less than 0.1%. We find this 99% threshold sits at or near
the knee of the curve in each benchmark, allowing correct
speculation on between 25 and 90 percent (average 46 per-
cent) of branches with an average of about one misspecula-
tion every 20,000 instructions. Clearly with such misspecu-
lation rates, very aggressive speculation (i.e., where the mis-
speculation penalty is two orders of magnitude larger than
the benefit of correct speculation) can be profitable.

While these results demonstrate significant opportu-
nity, they are somewhat optimistic. In selecting the set of
branches for speculation, the behavior of the whole pro-
gram’s run (representing future knowledge) has been used.
In the next section, we explore to what degree one can pre-
dict which branches will be biased using a pair of conven-
tional mechanisms.

2.2. Predicting the Set of Highly-biased Branches

While significant potential exists, we need a mechanism
to decide on which branch instances to speculate. In this
section, we present some data that demonstrates that this
can be a non-trivial issue. Specifically, we consider two ex-
isting mechanisms—using profile data from a previous run
and using profile data from the beginning of a run—and dis-
cuss their limitations.

Profiling from a previous run: Many aspects of program
behavior are consistent from one data set to the next; so us-
ing the behavior of one input to predict the behavior of an-
other works pretty well, in general [5, 16]. Nevertheless,
some program behaviors are entirely input dependent; many
programs are parameterizable (for example the optimiza-
tion level of a compiler) and the input parameters become
predicates for frequently executed branches. This presents a
problem for aggressive software speculation: for one inputa
branch may be 100% biased in one direction and for another
input the same branch may be 100% biased in the other di-
rection. Furthermore, if the profile input and the evaluation
input do not exercise the same regions of code, there will
be branches that will not be considered for speculation. In
general, because of these two effects, selecting speculation
from a previous input may have both lower benefit and more
misspeculations than self-training.

If the training input differs materially from the evaluation
input, the difference in program behavior can be substantial.
In Figure 2, the benefit and misspeculation rates achieved
from selecting biased branches (using a 99% threshold)
from a differing input are plotted as triangles; the set of in-

Bmark Profile Input Evaluation Input Len
bzip2 input.compressed input.source 10 19B
crafty ponder=on ver 0 ponder=off ver 5 sd=12 45B
eon rushmeier input kajiya input 9B
gap (test input) (train input) 10B
gcc -O0 cp-decl.i⋆ -O3 integrate.i 13B
gzip input.compressed 4 input.source 10 14B
mcf (test input) (train input) 9B
parser (test input) (train input) 13B
perl scrabbl.pl diffmail.pl 35B
twolf (train input) fast 3 (ref input) fast 1 36B
vortex (train input) (reduced ref input) 32B
vpr -bendcost 2.0 -bendcost 1.0 21B

Table 1. Simulation data sets and run length As our
intention was to demonstrate the fragility of offline profil-
ing, we attempted to find reasonable inputs whose behav-
ior differed from the evaluation set. In some cases, we di-
verged from the standard SPEC training sets for profiling,
which in most cases are unrealistically similar to the ref
inputs. All benchmarks were compiled for the Alpha ar-
chitecture using peak compiler optimization. ⋆ Since the
optimization level of gcc is hard coded, we had to mod-
ify its execution to give the appearance of -O0.

puts used is described in Table 1. For these inputs, the ben-
efit is reduced by a factor of 3 on average and the misspecu-
lation rate increases by a factor of 10. Using a higher thresh-
old does not significantly reduce the misspeculation rate for
some of the worst offenders (crafty,parser,perl and
vpr) and achieves only approximately 3/4ths of the bene-
fit. The misspeculation rate can be reduced by averaging to-
gether a number of profiles; while this does reduce misspec-
ulation rate it also reduces opportunity as input-dependent
branches will not be speculated on (data not shown). Over-
all, this form of speculation control does not do a good job
of approximating self-training, an observation also made
in [16].

Profiling from initial behavior: Another approach is to
use a branch’s initial behavior during the run to predict its
overall behavior. A recent study [17] shows that, in many
programs, initial behavior is a more effective predictor of
branch bias than having a profile from a training data set,
but, in some cases, a significant number of executions need
to be recorded in order to reliably predict a branch’s behav-
ior. We have found this to be true for characterizing highly-
biased branches as well.

Since most of the highly-biased branches exhibit that
behavior for their whole lifetimes, the bias of an initial
segment of execution is an effective predictor of which
branches will be highly biased. In fact, 80% of the bene-
fit of self-training can be captured by choosing to specu-
late only on branches whose bias exceeds 99% for their first
1,000 executions. The remaining 20% of benefit is derived



from branches that are not initially biased, but whose over-
all behavior is biased.

The difficulty with this approach is the same one ob-
served in [17]: some branches change their behavior—
sometimes drastically so—during their execution. Specifi-
cally, in our experiments 7% of the static branches selected
as biased from their initial 1,000 executions had an aver-
age bias for the whole run that was below 99%; more than
a third of these branches had average biases less than 90%.
The inclusion of these false positives results in a misspecu-
lation rate of 2.6%; without them, the misspeculation rate is
only 0.13%.

It is tempting to think that by observing a longer initial
sequence before making a decision, misspeculations can be
eliminated; however this is not particularly effective. The
crosses in Figure 2 show the benefit/misspeculation trade-
offs for 5 different training period lengths: 1k, 10k, 100k,
300k, and 1 million executions. While increasing the initial
sequence length does reduce misspeculation rate (points far-
thest from the y-axis correspond to the shorter training pe-
riod), in some cases (bzip2, perl) it takes more than
300k executions to reach a rate comparable to self-training.
In one case,mcf, even 1 million is insufficient, leaving it
with a 3% misspeculation rate. Furthermore, the cost of a
longer training period is a reduction of the achievable ben-
efit.

The problem with both of these mechanisms is that they
lack robustness. While each works well in certain circum-
stances, we have observed misspeculation rates as high as
one per 100 instructions executed. Clearly such misspecu-
lation rates are unacceptable for aggressive software spec-
ulation, where misspeculation detection and recovery could
take hundreds of cycles.

We believe that this lack of robustness derives from the
fact that once a decision to speculate is made it is never re-
considered. In Section 3, we demonstrate that, by adding a
small amount of reactivity, the system can be made quite ro-
bust. We first, however, take a closer look at those branches
that change behavior over their lifetimes.

2.3. Characterization of Changing Branches

When classifying branches from their initial bias, there
are two challenging behaviors: 1) branches that start bi-
ased, but change to unbiased, and 2) branches that are ini-
tially unbiased that later become biased. The first category
is the most serious because it represents potential misspec-
ulations; the second category merely represents lost oppor-
tunity, and, as we show in Section 3, the loss is modest.

We looked closer at the first class of branches, hoping to
find some characteristic that would distinguish them from
branches that remain biased; we did not find a fool-proof
mechanism, but we did not do an exhaustive analysis of pro-
gram structure. Figure 3 provides some insight into the dif-

0 50 100 150 200
0

1

bi
as

0 50 100 150 200
0

1

bi
as

0 200 400 600 800

number of branch executions (in thousands)

0

1

bi
as

0 20 40 60 80
0

1

bi
as

0 500 1000
0

1

bi
as

Figure 3. Five static branches with initially invariant
behavior. Branch bias averaged over blocks of 1000 dy-
namic instances. In all of these cases, the branch can
be considered highly biased for at least the first 20,000
branch instances.

ficulty of this problem; five static branches from the bench-
markgap are shown that are characterized as biased for at
least the initial 20,000 executions (most of which are ini-
tially 100% biased) then change their behavior, in some
cases completely reversing their bias. From solely looking
at the sequence of initial branch outcomes, these branches
are indistinguishable from completely biased branches.

Manual inspection of the source code provided little ad-
ditional insight. In some cases, we found that the branch’s
behavior was correlated to a path or calling context and the
branch’s initial behavior was influenced by the control flow
preceding the early executions. In other cases, no such cor-
relation was identified, leaving us with the unsatisfactory
explanation that the branch’s behavior was “data depen-
dent.” In one case, the branch outcome was purely a func-
tion of a loop induction variable so that it was false the first
32,768 executions, then true the rest. We found no features
that would enable these branches to be distinguished from
truly biased branches.

3. Required Characteristics for Robust Soft-
ware Speculation

In this section, we describe a simple model for con-
trolling speculation that addresses the shortcomings
of the aforementioned techniques. Despite its simplic-
ity, this model is effective enough that its performance
is comparable to, or exceeds, static self training (i.e., us-
ing the same input for profiling as evaluation). We present
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Figure 4. A finite-state machine model for branch be-
havior characterization.

Monitor period 10,000 executions
Selection threshold 99.5 percent
Misspeculation threshold 10,000 (+50 on misp., -1 otherwise)
Wait period 1,000,000 executions
Oscillation threshold will not optimize a sixth time
Optimization latency 1,000,000 instructions

Table 2. Model Parameters.

this model separate from its implementation (discussed
in Section 4) in order to demonstrate the fundamen-
tal requirements of such a classifier. We first describe the
model and demonstrate its effectiveness; then, in Sec-
tion 3.3, we demonstrate that the model is rather insensi-
tive to most of its parameter settings so long as its basic
form is intact.

3.1. A Simple Effective Model

The fundamental limitation of the models discussed in
Section 2.2 is that they decideoncewhether or not to specu-
late on a branch. Although they have different mechanisms
for making decisions, they both can be represented by the
diagram in Figure 4(a). This limitation translates into a lack
of robustness because there is no recourse when a branch
has been incorrectly characterized.

The key to robustness is allowing branches to be reclas-
sified when their behavior changes. Figure 4(b) shows a
model with two additional transitions, both back to the mon-
itor state. From the biased state, the transition should be
taken when the branch is resulting in an undesirable rate
of misspeculations. From the unbiased state, it is merely
necessary to periodically revisit the monitor state. As we
will show in our sensitivity analysis, the existence of these
transitions is fundamental; most every other attribute of this
model is of secondary importance.

Nevertheless, to evaluate the model, we need to assign
values for the various model parameters. We attempted to
select parameters for the model that would facilitate its im-
plementation in a real system; Table 2 relates what we be-
lieve to be reasonable parameters, as described below.

To a large degree, the model parameters were chosen to
reduce the effort required by the optimization system. Ev-
ery transition into or out of thebiasedstate requires the code
to be re-optimized. The main drawback of using a model
like Figure 4(b) is the potential for oscillating in and out

of the biased state. We use a number of techniques to miti-
gate such oscillation:

1. First, we use a moderately long monitoring period
(10,000 executions) as a simple filter for reducing the
number of false positives.

2. Second, we introduce some hysteresis by using a
stricter threshold for entry into the biased state than
for eviction. For example, to target branches with av-
erage bias of greater than 99%, we require the
bias to be greater than 99.5% to begin specula-
tion, and we only evict branches when their bias falls
below 98% for a non-trivial time period. This is im-
plemented in the model using a saturating counter that
counts up 50 on a misspeculation and down by one
on a correct speculation; the branch is evicted if the
counter reaches 10,000 (requiring at least 200 mis-
speculations). This hysteresis is necessary to tolerate
short bursts of misspeculations by otherwise bi-
ased branches.

3. Third, we use a relatively long waiting period (1 mil-
lion executions) in the unbiased state. In addition to
reducing the frequency at which a branch’s classifica-
tion needs to be reconsidered, increasing this period
reduces the likelihood that a branch which is only tem-
porarily biased will be selected for speculation.

4. Fourth, we limit the number of times each branch can
oscillate. This is a necessity for the small number (∼50
of over 7000) of branches that otherwise oscillate hun-
dreds or thousands of times, even for our relatively
short program runs. After a threshold number of os-
cillations, we conservatively choose not to speculate
on these branches. We have found this limit to have
little impact on the system’s results with a two-thirds
(on average) reduction in the number of requested re-
optimizations.

For transitions into or out of the biased state, which are
accompanied by re-optimization requests, we model the la-
tency to make modifications to the code. Given the likely
abundance of thread-parallel resources in future processors,
we assume that re-optimization is performed in parallel with
execution and hence has latency, but no overhead. We use
a latency of 1 million instructions (the functional simula-
tions described below has no notion of time). Thus, after
a branch has been selected for speculation, we wait 1 mil-
lion instructions before counting correct and incorrect spec-
ulations. Likewise, when a branch is evicted from the bi-
ased state, correct and incorrect speculations continue tobe
counted for the following 1 million instructions, until the
repaired code fragment can be deployed. While the value
of this latency is somewhat arbitrary, it represents an esti-
mate of the latency for the first stage of our dynamic opti-
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Figure 5. Reactive control performs comparably with self-training. The line still represents the correct/incorrect spec-
ulation trade-off achievable through self-training. The other marks are results from the reactive control model. square: base-
line, x: no eviction (without biased→monitor transition), +: no revisit (without unbiased→monitor transition), circle: evic-
tion by bias sampling, ellipse: shorter revisit period, diamond: lower (1,000) eviction threshold, triangle: sampling. As all
of the points except the x and + are collocated, the behavior of the model is primarily only sensitive to the presence of all
of the transitions.

mizer for the median-sized optimization region (∼100 in-
structions).

3.2. Reactive Model Performance

In this subsection, we demonstrate two characteristics
of the model: 1) its ability to select a set of branches on
which to speculate is comparable to what is achievable by
self training, and 2) the model is rather forgiving with re-
gard to its implementation, except that all of the transitions
must be present.

As some of the changes of program behavior are only
observed in long runs of the programs, we did the experi-
ments in the context of a functional simulator to enable us
to simulate the benchmarks to completion. These runs ex-
plore the behavior of the speculation control mechanism in
an abstract context, independent of any particular specula-
tion mechanism. The behavior of each branch is tracked in-
dependently, with the exception of modeling the optimiza-
tion latency.

Figure 5 plots the results of these simulations in the same
format as Figure 2. For reference, the self-training line is
shown. The performance of the model with the parameters
shown in Table 2 is shown by a square dot. In all bench-
mark runs, the performance is competitive with self train-
ing. In gzip andmcf, the model outperforms static self
training, because it can adapt to the low frequency time-
varying behavior of branches; for example, the average bias
of the middle branch in Figure 3 is about 60% so it should
not be selected for speculation by a static mechanism, but
the reactive model can discern that its behavior consists of
two highly-biased regions, each of which can be exploited.

Table 3 presents results regarding how often branches
transition into and out of the bias state. Of the static (con-
ditional) branches touched during the executions, 34 per-
cent enter the biased state some time during the execu-
tion. Of these, about 7 percent–about 2% (37%×7%) of
touched branches–are later evicted from the biased state.
Some of these evicted branches get evicted more than once;
the average evicted branch gets evicted 1.6 times (total evic-
tions/static branches evicted). Almost half of conditional



Static branches total % misspec
Bmark touch bias evict evicts spec. dist.
bzip2 282 109 6 15 44.1% 26,400
crafty 1124 396 138 276 25.1% 109,366
eon 403 95 3 3 38.3% 105,552
gap 3011 1045 167 201 52.5% 36,728
gcc 7943 2068 11 12 66.3% 20,802
gzip 314 66 7 12 35.4% 43,043
mcf 366 210 22 47 33.6% 12,896
parser 1552 284 53 124 26.3% 50,643
perl 1968 1075 58 64 63.4% 55,382
twolf 1542 440 19 22 32.1% 165,711
vortex 3484 1671 67 104 88.5% 92,163
vpr 758 340 16 38 31.6% 65,588
ave 34% 2% 76 44.8% 65,000

Table 3. Model Transition Data. Only a small fraction
of branches need to be evicted from the biased state and
mispredictions can be very far apart.

branches can be eliminated by the speculation, incurring
only one misspeculation every 65,000 dynamic instructions,
on average.

3.3. Sensitivity Analysis

These above results are surprisingly insensitive to ex-
actly how the model is implemented. Having explored a
number of configurations, we have found that most changes
merely shift the model’s performance up or down along the
self-training curve. We have included some sensitivity re-
sults in Figure 5; in many cases the points in the figure over-
lap, emphasizing the insensitivity. We describe these exper-
iments below:

1. Lower Eviction Threshold: Lowering this threshold
from 10,000 to 1,000 makes the system less tolerant
of branches with varying biases, leading to a more
conservative (lower correct and incorrect speculations)
system.

2. Evicting By Sampling: Rather than tracking each
branch’s misspeculation rate continuously, this experi-
ment periodically re-samples the branch’s bias to make
the eviction decision. Computing the bias of 1,000
samples every 10,000 executions (a 10% duty cycle)
ends up evicting more branches resulting in a slight re-
duction of both correct and incorrect speculations.

3. Sampling in “monitor” State: Using a 1-in-8 sam-
pling rate adds a little additional uncertainty causing
a few unbiased branches to be declared biased. Larger
sampling rates can be tolerated as well by lengthening
the monitor period to keep the number of samples con-
stant.

4. More Frequent Revisit: By lowering the revisit wait
time by an order of magnitude to 100,000 executions,
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Figure 6. Instantaneous misprediction rate when a
biased branch transitions from being biased. Two be-
haviors are common when a branch leaves the biased
state: 1) the branch bias softens (bias direction stays the
same, but the percentage reduces), 2) the branch be-
comes perfectly biased in the other direction.

we introduce two competing factors: 1) a reduction of
time spent by biased branches in the unbiased state
(good), and 2) branches that are only momentarily bi-
ased are more likely to be selected and later evicted
(bad).

5. Optimization Latency: All of the results discussed
include a latency for optimizing and deploying new
code. If this latency is set to zero (data not shown),
the amount of correct speculations increases by only
0.1% and the number of misspeculations is reduced by
a factor of 1.1. This latency tolerance arises from two
factors: 1) the branch in question may not be executed
again for many instructions, and 2) although the branch
may not be consideredhighlybiased, it still may be bi-
ased in the same direction; as a result only a fraction of
future executions will cause misspeculations. Figure 6
shows the misprediction rate (fraction of branches not
in the original bias direction) in the vicinity (up to 64
branches) of a transition out of a highly biased state.
Over 50 percent of the static branches have biases less
than 30% in the transition period. It is really only the
20 percent of branches that become perfectly biased in
the other direction that require quick action.

If, however, the added transitions are removed, be-
havior changes significantly. If the revisit transition
(unbiased→monitor) transition is eliminated, the model
achieves only a little more than 80% of the correct spec-
ulations of the baseline. Removing the eviction transi-
tion (biased→monitor) increases misspeculation rate by
almost two orders of magnitude. Table 4 relates the av-
erage benefit and misspeculation rates for each experi-
ment.

The fact that the model is so insensitive to its implemen-
tation is a great boon to system implementors. It means that
the model can be implemented in an efficient manner with-
out a significant impact on its performance.



configuration correct incorrect
no revisit 35.8% 0.007%

lower eviction threshold 42.9% 0.015%
evictionby sampling 43.6% 0.021%

baseline 44.8% 0.023%
sampling in monitor 44.8% 0.025%

more frequent revisit (100k) 46.1% 0.033%
no eviction 53.9% 1.979%

Table 4. Model Sensitivity Only the no revisit and no
eviction configurations truly differ from the baseline.

4. Model Implementation

While the previous section explored the proposed spec-
ulation control mechanism in the abstract, this section ex-
plores it in the context of a particular system: Master/Slave
Speculative Parallelization (MSSP) [19, 20], to validate the
results in the previous section with performance data. This
section is organized to first provide a brief overview of the
salient features of MSSP relevant to this work (Section 4.1).
Section 4.2 describes our experimental methodology, and,
in Section 4.3, we demonstrate the sensitivity of an MSSP
execution to its control model.

4.1. MSSP Overview

Master/Slave Speculative Parallelization (MSSP) is an
execution paradigm that provides a framework to support
speculative program transformations. Unlike the specula-
tive program transformations performed for EPIC/VLIW
systems like IA-64 [3] and Transmeta’s Crusoe [7], MSSP
uses a speculative version of the program that has no code
to check the speculations. Checking is not performed by the
speculative program because eliminating the checks enables
eliminating as much as two-thirds of the dynamic instruc-
tions executed by the speculative program.

To detect misspeculation, MSSP, like SlipStream [15],
uses a secondtrailing execution to “check” the results
of the speculative program’s execution. While SlipStream
checks the speculative program at every instruction bound-
ary, MSSP performs checks only at selected instructions re-
ferred to astask boundaries. Because the programs need
only correspond at the task boundaries, there is significant
flexibility in the optimizations that can be applied to the
speculative program. Specifically, MSSP is free to use opti-
mizations that restructure the code (e.g., in-lining, redun-
dant load/expression elimination, register promotion, and
constant folding). In contrast, SlipStream is constrainedto
use a strict subset of the original program.

The details of MSSP’s operation are not essential for the
purpose of this paper. For those unfamiliar with MSSP, only
three characteristics merit attention: First, MSSP speculates
at the granularity of atask(the sequence of instructions be-
tween two task boundaries); any (observed) misspeculation

Leading Core Trailing Cores
Pipeline 4-wide, 12-stage pipe 2-wide, 8-stage
Window 128-entry inst. window 24-entry
ALUs 4 (1 complex) and 2 LD/ST 2, 1 LD/ST
Caches 64KB 2-way SA 64B blocks 8KB 8-way, 64B

3 cycle (including AGEN) same latency
Br. Pred. 8Kb gshare, 32-entry RAS, same

and 256-entry indirect same
L2 cache shared 1MB, 8-way SA w/64B blocks

10-cycle access minimum
Coherence 10-cycle minimum hop between processors

(uncongested network)
Memory 200-cycle lat. minimum (after L2)

Table 5. Simulation Parameters

will prevent the commit of a whole task. Second, MSSP sys-
tems can be engineered such that the speculative program’s
execution is generally the performance bottleneck, so that
benefit from any speculation optimizations performed on
the speculative program translate directly into overall sys-
tem performance. Third, the misspeculation detection and
recovery latency can be hundreds of cycles1, because mis-
speculations are detected by the trailing execution signifi-
cantly after they occur and require restarting the speculative
program from the trailing program’s state. Thus, MSSP em-
bodies an aggressive software speculation mechanism and
requires an effective speculation control system to achieve
robust performance.

4.2. Experimental Methodology

The next section’s performance results were col-
lected with an execution-driven simulator that uses the
SimpleScalar loader and syscall emulation functional-
ity. Our simulations model an asymmetric chip multi-
processor (CMP) with one large core (used for the lead-
ing execution) and a collection of 8 smaller cores (used
for the trailing execution). Our simulator models the ac-
tivities of each core as well as the coherence proto-
col used to communicate between them. Parameters for
the cores and the memory system are provided in Ta-
ble 5.

Unlike prior work on MSSP [19, 20] that used self-
training and an off-line generated speculative program, our
simulator emulates a dynamic optimization system that
generates speculative program fragments based on what
is learned about the program as its execution progresses.
Thus the system identifies hot program regions, character-
izes them, and generates optimized versions which are then
executed by the execution-driven simulator. While this sys-
tem lets us predict the performance of the executed spec-

1 By comparing to a modified version of our simulated system that does
not apply transformation when they are invalid, we computedthe true
cost of a misspeculation in our simulated system to be around400 cy-
cles.
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ulative program, because the dynamic optimizer is imple-
mented as part of the simulator we cannot determine how
long it takes to generate the speculative program fragments.
Currently, we model the optimization process as taking a
fixed latency (a parameter to our simulator). It is important
to note that, while the optimization process has a certain la-
tency, that latency does not translate directly into overhead,
as the optimization process is performed on the trailing pro-
cessors when they are idle, in parallel with the execution of
the program.

As simulating a chip-multiprocessor is somewhat com-
putationally intensive, we use relatively short (200 million
instruction) runs of the benchmarks. Each run begins from
a checkpoint 5 billion instructions into the execution with
cold caches and predictors. To approximate the behavior of
the dynamic optimizer in steady state, we’ve parameterized
its “hot region detector” to find and deploy regions artifi-
cially fast, to minimize the impact of “warming up” the dy-
namic optimizer.

Experiments with our functional simulations suggest that
the shortness of these runs does perturb their sensitivity
to model parameters, in the following manner. First, these
short runs are more sensitive to the time in the monitor state;
longer monitor periods significantly reduce the number of
correct speculations. Second, the shorter runs are more sen-
sitive to optimization latency, again because it reduces the
number of correct speculations. Third, shorter runs are less
sensitive to the choice of control policy, because over a
shorter period of time a branch is less likely to change bias
and the impact of that change is bounded. Nevertheless,
these runs still demonstrate the key thesis of this paper, that
the choice of control policy has a first-order effect on per-
formance.

For the graphs in the next section, we are primarily con-
cerned with the relative performance of the MSSP config-
urations. In spite of this, we have chosen to normalize our
results to a non-MSSP execution on the large core of our
CMP, in order to demonstrate that the choice of a poor
control policy can reduce MSSP performance below that
of a “vanilla” superscalar. The speedups of MSSP relative

to the baseline should be interpreted as lower bounds as
these short runs exhibit an unrepresentatively large warm-
up overheads.

4.3. Results

Due to space constraints, we limit our performance
simulation-based validation to the two most important re-
sults: 1) the necessity of the eviction (biased → monitor)
arc in the closed-loop model, and 2) the lack of sensitiv-
ity to optimization latency.

Figure 7 compares the performance of closed- and open-
loop (i.e., those with and without the eviction arc). Even
in these short runs, which are desensitized to this effect
(see Section 4.2), the absence of the eviction arc signifi-
cantly impacts performance (18%). Using a longer mon-
itoring period somewhat reduces the impact of using the
open-loop policy, but an 11% descrepency remains, even
for these short runs. A few benchmarks (e.g., eon, gcc,
perl, andtwolf) show limited sensitivity because few
branches need re-characterization at this program point.
Vortex’s large working set makes it sensitive to the moni-
tor period in these short runs.

The above experiments were done with a optimization
latency of zero. Figure 8 shows that optimization latency
has little impact on performance. While optimization la-
tency potentially reduces the number of correct specula-
tions and increases the number of incorrect speculations, in
practice, optimization latencies of 0, 100k and 1 million cy-
cles have almost indistinguishable performance (< 2%). As
short runs have less time to amortize the optimization la-
tency, we expect that in longer runs the sensitivity would be
even lower.

These simulations also sheds some light on the correla-
tions between branches. Because MSSP performs specula-
tion at the granularity of tasks, we found that in some cases
the misspeculation rate is noticeably lower than is predicted
by the abstract model. This occurs when multiple failed
speculations occur within the bounds of one task, resulting
in a single task misspeculation. In some cases, this arises
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from multiple instances of the same static branch. We also
found behavior changes in one static instruction are corre-
lated to that of another. The benchmarkvortex demon-
strates this clearly. Figure 9 plots the behavior of the 139
static branches that have significant periods of both being
biased (> 99%) and unbiased (< 99%). The period when
each branch is highly biased is shown as a horizontal line,
and it can be seen that some instructions change their be-
haviors in groups. The behavior is present (generally to a
lesser extent) in about half of the SPEC2000 integer bench-
marks.

The fact that branches are correlated means that fewer
code re-optimizations are necessary than transitions of the
model. In our current implementation, we find that about
half of the time it is necessary to re-optimize a code region
(a function or loop body in the distiller) there is more than
one change to make.

5. Related Work

In a keynote talk [14], Smith demonstrated anecdotal ex-
amples of branches that drastically change their bias during
program execution, but does not discuss them in the con-
text of any mechanism or policy.

A number of researchers have recently been concerned
with the “phase behavior” of programs, primarily in the con-
text of adaptive processors [2, 6, 11, 12]. Generally, the
phases they wish to distinguish are large (to amortize the
cost of adaptation) and significantly different (typicallyre-
gions are characterized by distinct regions of the static pro-
gram). In contrast, the present work is concerned with track-
ing the change of behavior of individual branches.

While the Dynamo dynamic optimizer [1] does not mon-
itor program behavior directly, their preemptive flushing of
the fragment cache will force re-optimization of regions
when phase changes (of the sort described in the previous
paragraph) occur. As such phase behavior is somewhat or-
thogonal to the behavior changes of individual instructions,
this policy will likely perform somewhere between closed-
loop and open-loop policies. Because Dynamo used limited

0 10000 20000 30000

dynamic instructions (in millions)

Figure 9. Behavioral changes for different static
branches may be correlated. This plot shows the 139
static branches (one per horizontal track) in the bench-
mark vortex that flip between being characterized bi-
ased and unbiased; each horizontal line shows the pe-
riod of time when the branch is considered biased. It can
be seen that there are groups of branches that change
behavior together.

speculation, this policy was sufficient because of the lim-
ited downside.

It is our belief that Transmeta’s Code Morphing Soft-
ware (CMS) reactively controls its software speculation as
is described in this article, but they refuse to publicly com-
ment on the issue.



6. Conclusion

In this paper, we have demonstrated that software spec-
ulation can be effectively controlled and the key is in-
troducing a reactive control system. By monitoring pro-
gram behavior throughout the application’s execution and
re-optimizing when program behaviors change, software
speculation can be made robust. In fact, such mechanisms
achieve results comparable to self-training, a practice gen-
erally thought to be optimistic.

We described a simple yet effective model for control-
ling software speculation. We have shown that the model
is surprisingly insensitive to its parameters, which should
greatly facilitate its efficient implementation. Most notably,
the model is latency tolerant, an important characteristic
when the latency of code (re-)optimization is considered.
By virtue of conservatively selecting highly-biased program
behaviors on which to speculate, a reactive control system
can maintain a low misspeculation rate while only periodi-
cally sampling program behavior.
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