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Abstract

A conceptually appealing approach to supporting a broad
range of workloads is a system comprising many small cores
that can be fused, on demand, into larger cores. We demon-
strate that using in-order cores for this purpose, even un-
der idealized assumptions about fusion-related overheads,
would introduce fundamental obstacles to achieving good
performance — obstacles that are not present when out-of-
order cores are used. Matching the performance of modern
dynamically-scheduled designs demands that a fused machine
be able to simultaneously manage a large number of active
dataflow chains, many more than the amount of ILP typically
extracted from the code. When it is in-order cores that are
fused, this requirement, in turn, demands either that the active
dataflow chains be carefully interleaved among the available
issue queues, or that enough cores be provided for them to
reside at distinct queues. Using an abstract model for rea-
soning about the performance of these machines, we show
that the former option is fundamentally hard, in the sense
that it necessitates instruction steering hardware that would
be too complex to build. The latter option would demand
so many cores that the machine would be overwhelmed by
fusion-related overheads. In short, if the goal is to match the
performance of modern dynamically-scheduled machines, fu-
sion of in-order cores is not a very compelling approach; ei-
ther a fundamentally new method for fusing cores is needed,
or some form of out-of-order capability must be provided at
the constituent cores.

1 Introduction

It appears two classes of programs will dominate in future
client system workloads. The first comprises the massively-
parallel, computationally-intensive programs in areas such as
graphics, physics, signal processing, and recognition, mining
and synthesis (RMS). The second constitutes the very large
body of remaining applications that resist parallelization. Pro-
grams in the first category may well contribute most of the
instructions committed by the processor, but they will likely
constitute only a small fraction of the total programs that must

be supported: the bulk of applications fall into the second cat-
egory. Each class of program places very different demands
on the processor. The first benefits from a wealth of nar-
row, perhaps multithreaded, cores of modest clock speed, with
wide SIMD functional units and a high-bandwidth memory
system. The second prefers a single high-frequency, wide-
issue, aggressively-speculative, out-of-order processor with a
low-latency memory system — requirements that are clearly
at odds with those of the first category. Designing a single
chip to handle both application groups therefore constitutes a
challenging problem.

A number of solutions have been proposed in the literature.
One well-studied technique is the heterogeneous chip multi-
processor (CMP) [11, 12], an example of which is depicted
in Figure 1(a). This machine comprises a small number of
aggressive out-of-order superscalar cores, plus a sea of small,
efficient, throughput-oriented cores. Though each type of core
is designed specifically for the class of workload it is intended
to execute, this approach has two drawbacks. First, a chip ven-
dor must now design two (or more) cores for a single product
release. Second, any applications that fall between the two
extremes on the workload spectrum may be poorly served.

More recently, an alternative approach has been proposed in
which a homogeneous many-core CMP is extended to support
on-demand aggregation, or fusion, of small processor cores
into a large out-of-order uniprocessor [6, 8]. Figure 1(b) de-
picts this conceptually appealing idea. Its principal benefit is
that it requires the design of just one simple core, yet is flexi-
ble enough to cater to a wide range of thread- and instruction-
level parallelism (TLP and ILP, respectively) in the workload.

A notable factor in recent fusion work is the use of small
dynamically-scheduled processors as the basic unit of com-
position. However, the many-core designs being developed
and announced by industry, such as Sun’s Niagara [16], In-
tel’s recently announced Larrabee, ClearSpeed’s CSX600 [4],
the Cell’s SPEs [7], Ageia’s PhysX [1] and GPUs, are all in-
order substrates. This is a reflection of the target domain for
those machines, where massively-parallel, compute-intensive
workloads are the norm. In those programs, out-of-order ex-
ecution is not required, neither for scheduling (since narrow
machines are used), nor for latency tolerance (since multi-
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Figure 1. Two approaches to dealing with workload diversity. On the left, a heterogeneous CMP includes a few powerful cores for sequential
workloads and many simple cores for massively-parallel workloads. The homogeneous CMP on the right comprises many simple cores, subsets
of which can be fused (4 in this case) into a distributed, wide-issue processor to support sequential workloads.

threading can be used instead). In fact, supporting out-of-
order execution would only incur area and power overheads,
reducing the chip’s peak throughput potential.

The ideal design, therefore, would be a many-core substrate
comprising in-order cores, but which supports fusion of those
cores to synthesize out-of-order execution capabilities when
they are needed. In such a framework, fused cores would sup-
port a restricted form of out-of-order execution, one in which
the individual cores continue to execute instructions in-order,
but which can slip relative to one another to achieve out-of-
order execution overall. The question we tackle in this pa-
per is whether this slip-oriented out-of-order execution model
renders the machine versatile enough to deliver good perfor-
mance on single-thread workloads. Appealing though it is,
we find that its performance potential is fundamentally lim-
ited by basic properties of program dataflow. We will show
that achieving good performance demands either very sophis-
ticated schemes for distributing (steering) instructions among
cores, the complexity of which would probably exceed that
of conventional dynamic schedulers; or it demands the fusion
of so many cores that fusion-related overheads would render
the design impractical. In short, we find that fusion of small
cores is not appealing if those cores support in-order execu-
tion only; some form of out-of-order capability is needed for
effective synthesis of out-of-order execution in the aggregate.

We start our evaluation in Section 2, where we describe pre-
cisely what we mean by horizontal fusion of in-order cores,
and by the slip-oriented execution model that arises in such a
context. It is this restricted execution model that ultimately
determines the viability of this class of machine, and so it
is to its performance potential that we confine our attention.
We therefore proceed to optimize away all the overheads that
inevitably arise when otherwise independent cores are fused,
thereby leaving just the per-core in-order issue constraint as
the primary factor affecting performance. In Section 3, we
then informally show that it is basic properties of dynamic
dataflow that pose problems for slip-oriented machines. In
so doing, we also provide the intuition behind two principal

avenues for overcoming those challenges.

The first of those is instruction steering, the policy used to
distribute instructions among the cores. Section 4 is devoted
to this subject. We show that potential for better steering does
indeed exist, but that implementation complexity imposes
fundamental obstacles to achieving that potential. In fact,
we show that any policy aiming to improve performance will
necessarily be too complex to build. The key contribution of
this paper, which underpins that result, is a conceptual frame-
work for reasoning about performance of slip-oriented execu-
tion. We use that framework to show that achieving perfor-
mance within 40% of a comparably-resourced dynamically-
scheduled machine requires that each steering decision takes
into account its potential to delay execution, both of the in-
struction being steered and of those yet to be steered. In ef-
fect, steering decisions must be governed by exact knowledge
of when instructions will eventually execute. It is this require-
ment that is both necessary for good performance and funda-
mentally hard to achieve in practice. And it is this requirement
that is ultimately imposed by the in-order issue constraint: if
steering were instead targeting out-of-order cores, each deci-
sion would have fewer ramifications in terms of when subse-
quently steered instructions can execute.

The second strategy for improving performance, which we
explore in Section 5, is adding more cores to the fused de-
sign. We find that increasing the number of cores relative
to instruction fetch width steadily improves the ability to ex-
ploit ILP, even when a simple instruction steering policy is
used. However, obtaining acceptable performance demands
an inordinately large number of cores — 12-16 to match the
performance of a conventional 4-wide out-of-order machine,
for example. Aggregating such a large number of cores ex-
acerbates fusion-specific overheads, not least of which is the
cost of inter-core communication, which we show can quickly
outweigh the benefits of more cores. We also show, however,
that it is principally the addition of extra issue queues, not
whole cores, that facilitates improved performance, an obser-
vation that leads us to consider designs with more than one



in-order issue queue per core. While these can indeed match
the performance of designs that fuse many more cores, they
rely on a (comparatively modest) form of out-of-order execu-
tion at each core to sustain slip among the local in-order issue
queues.

We want to emphasize that this paper does not merely
show where we were or were not able to achieve compelling
performance with horizontally fused in-order cores. Rather,
our analysis explores fundamental aspects of performance in
these machines, independent of artifacts of specific design
choices. Our principal contribution is to delineate the design
space, showing where solutions for good performance might
be found, and, more importantly, where they simply cannot
be found. We feel that a study of these fundamental issues is
a necessary first step in this new area. And though our con-
clusions are, of course, subject to our assumptions about the
underlying execution model, those assumptions are general
enough to cover a wide range of designs. Short of fundamen-
tal changes to the way we fuse the in-order cores, our princi-
pal conclusion, which is that some form of out-of-order capa-
bilities are necessary for synthesizing out-of-order execution
overall, holds true.

2 Background

In this section, we describe the class of machine to which
this paper is devoted. Section 2.1 explains what we mean by
horizontal fusion, and by slip-oriented out-of-order execution,
which is the particular execution model that arises when it is
in-order cores that are horizontally fused. As we noted earlier,
our focus is on basic principles, not on specific designs, so we
idealize most of the overheads introduced by fusion, to the
point that only the underlying slip-oriented execution model
differentiates the fused machine from a conventional out-of-
order superscalar. After briefly describing our experimental
infrastructure in Section 2.2, we present initial performance
figures in Section 2.3 to show that this restricted execution
model is prone to some very severe performance problems.

2.1 Horizontal fusion of in-order cores

Figure 2(a) provides a high-level view of a machine that hor-
izontally fuses four small in-order cores. We refer to each
of the in-order cores within the aggregate as a lane, and to
the aggregate itself as a laned machine. When fused, the in-
dividual lanes operate together as a single processor. In the
front-end, each lane contributes to the fused machine’s fetch
bandwidth by supplying a portion of the fetch packet each cy-
cle. Coordinating these otherwise disjoint instruction supply
units requires the addition of a centralized structure, shown
in the diagram as the front-end fusion logic. This poten-
tially complex piece of machinery controls instruction fetch
from distinct instruction caches, manages control flow pre-
diction in some way, and orchestrates fetch redirection when
branches are predicted (detected) to be taken (mispredicted)
at one of the lanes. Once each fetch packet has been assem-
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Figure 2. Laned machines. The diagram on the left shows a high-
level view of four in-order cores (lanes) being fused into a larger, 4-
wide laned machine. New hardware required to coordinate the fused
cores is shaded. The diagram on the right shows the idealized view
we adopt for these machines, one in which all overheads introduced
by the fusion-specific hardware are ignored.

bled, the front-end logic renames instructions and then steers
(dispatches) them to an issue queue at one of the lanes, where
they will eventually execute.

Because lanes operate in-order, an instruction becomes eli-
gible for issue when it reaches the head of its issue queue and
when all its operands are available. Some of those operands
will perhaps have been computed remotely at another lane, so
some form of global communication mechanism is needed to
distribute data among the lanes. Figure 2(a) shows a global
bypass network for this purpose.

Instructions that have completed execution have their re-
sults committed, in program order, by centralized back-end
fusion logic. This is needed because execution across lanes
does not occur in lockstep, so instructions can complete their
execution out-of-order. As a result, the set of instructions in-
flight between dispatch and retirement constitute an instruc-
tion window, no different, in principle, from that maintained
by conventional dynamically-scheduled designs. But the ex-
ecution model supported within that window is a restricted
one, with out-of-order execution arising solely through slip
among the in-order lanes; execution is locally in-order, glob-
ally out-of-order. It is the IPC potential of this slip-oriented
out-of-order execution model that forms the central focus of
this paper.

The additional hardware required to coordinate otherwise
independent cores inevitably introduces a number of over-
heads. For example, fusion logic necessarily lengthens the
front-end pipeline, thereby increasing the branch mispre-
diction penalty, and inter-lane communication introduces a
global communication penalty, which effectively lengthens
any dataflow chains that cross lane boundaries. We will largely
ignore these overheads in this paper. We do so deliberately.
We want to explore performance constraints arising solely as
a result of slip-oriented execution, and which are therefore in-



herent to the laned machines; modeling design-specific over-
heads would merely cloud that analysis. We therefore make
the following very optimistic assumptions about the imple-
mentation. The resulting idealized machine, which closely
resembles a clustered superscalar [2, 3], is depicted in Fig-
ure 2(b).!

1. Front-end. To capture just the effects of register rename,
we assume a laned machine’s front-end is the same as
that of an equal-width dynamically-scheduled machine.
Coordination of control flow across lanes and instruction
steering logic introduce no additional overheads.

2. Execution core. Global communication is free: trans-
ferring register values among lanes occurs with zero la-
tency and unbounded bandwidth. We assume memory
disambiguation occurs in a centralized manner and with-
out any additional delays. We also place no bounds on is-
sue queue capacity at each lane, so only the ROB places
a limit on the number of in-flight instructions.

3. Memory hierarchy. We assume a single data cache for
all cores comprising a laned machine, and that the cache
has sufficient bandwidth to support as many lanes as are
involved in the fusion. If each in-order core originally
has its own L1 data cache, we assume no overheads are
incurred in aggregating those into a single, shared cache.

We will, in some cases, show the impact that a global com-
munication penalty would have on performance, but only so
that we can quantify the extent to which (a fraction of) our
idealized assumptions are benefiting performance.

In spite of these idealized assumptions, the laned machines
are prone to performance problems, the severity of which we
now demonstrate with an initial set of experiments. First,
however, we briefly describe the experimental infrastructure
we make use of in our work.

2.2 Experimental framework

Throughout this paper, we evaluate two types of laned ma-
chine, one with a 4-wide front-end and one with an 8-wide
front-end. For each of those, we explore configurations in
which the in-order cores support 1- and 2-wide issue. For
convenience, we refer to the resulting configurations using the
nomenclature F'w—(L xIw), where F' denotes the machine’s
effective front-end width, L the number of lanes it has, and I
the issue width of each of those lanes. We will use the shorter
LxIw notation when front-end width is clear from context.
We will not, in general, require that /' = L - I. More specif-
ically, we will permit configurations in which the number of
lanes exceeds the front-end width we actually use. For exam-
ple, the 4w—(8 x 1w) machine fetches 4 instructions per cycle,
but steers them among 8 1-wide cores; only 4 of the 8 instruc-
tion supply units are being used in this configuration.

1General though this view is, it does not cover a machine like Voltron [18],
which relies fundamentally on the compiler to orchestrate when and how fu-
sion occurs, as well as to statically map instructions to lanes. We confine our
analysis to schemes that are invisible to the compiler.

2-wide 4-wide 8-wide

Fetch perfect instruction cache; same. same.

perfect uncond. predictor;

tournament cond. predictor.
Front- 2-wide, 5 stages to dispatch 4-wide, 8 8-wide, 12
end to dispatch. | to dispatch.
Window | 64-entry reorder buffer; 128 ROB; 256 ROB;

32-entry unified issue queue. | 32 IQ. 64 1Q.
Execute | 2 int, 2 fp; 1 memory port. 4i/4f/2m. | 8i/8f/4m.

latencies similar to 21264; same. same.

ideal mem. disambiguation.
Memory | L1: 64KB, 4-way, 2-cycles; same. same.

L2: 8MB, 8-way, 12-cycles;

DRAM: 300 cycles.
Back- 2-wide. 4-wide. 8-wide.
end

Table 1. Monolithic baseline machine configurations.

To gauge the efficacy of the laned machines, we compare
their IPC to that of 2-, 4- and 8-wide out-of-order superscalar
designs, aiming thereby to understand where in the spectrum
of out-of-order performance capabilities the laned machines
reside. Throughout this work, we will refer to those baselines
as the monolithic machines. Table 1 enumerates their main
architectural parameters.

Since we are interested specifically in laned machines in
terms of their potential to perform well on sequential work-
loads, we confine our analysis to the SPEC2000 Integer
benchmark suite. All programs were compiled for the Al-
pha ISA using the DEC C Alpha compiler (V5.9-005), with
peak optimization enabled, but with no profile feedback. All
of the data we present is obtained from cycle-accurate simu-
lation of three 100-million instruction traces, one each at 3-,
5- and 8-billion instructions into the benchmark’s run. Due
to space considerations, we will present average performance
results only, but assure the reader that all benchmarks observe
the same trends as the average.

2.3 Performance evaluation

As a first step toward understanding the potential of laned ma-
chines, we compared the performance of a few basic config-
urations against that of our monolithic machines. To man-
age instruction steering in the laned machines, we used the
dependence-based steering policy, which was developed by
Palacharla et al. for distributing instructions among the FIFO
buffers in their complexity-effective scheduler [14]. That
same policy, slightly modified, was adopted by Kim and
Smith in their ILDP work, where it was used to steer instruc-
tions in a clustered microarchitecture comprising 1-wide in-
order execution units [9, 10]. Though recent work [15] has
exposed some problems with this steering policy (a subject to
which we will return in Section 4), it remains the best pub-
lished scheme for distributing instructions among in-order ex-
ecution units, and therefore a good starting point for our study.

We implemented the dependence-based steering policy for
four basic laned machine configurations: the 4w—(4x1w)
and the 8w—(8x 1w) machines, which fuse 1-wide in-order
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Figure 3. Laned machine performance. Each bar shows harmonic
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are configured similarly in terms of their memory hierarchy and issue
capabilities, but their front-end pipelines are shorter.

cores; and the 4w—(2x2w) and the 8w—(4x2w) configura-
tions, which do likewise with 2-wide in-order cores. Figure 3
compares their performance to that of various monolithic de-
signs. The laned machines improve on the performance of
superscalar in-order designs, but they fail to match the out-of-
order machines. Both the 4-wide and 8-wide laned machines
fall well short of an equal-width monolithic out-of-order de-
sign, being about 1.6 and 1.4 times slower, respectively. In
fact, the laned machines perform more like a much smaller
out-of-order machine. Both of the 4-wide laned machine con-
figurations fail to match even the 2-wide out-of-order ma-
chine; only one of the 8-wide laned machines manages to do
so, but both fall short of the 4-wide out-of-order machine.

3 Understanding the challenges

Since we do not model any overheads, the above performance
results are ultimately attributable to slip-oriented execution.
In this short section, we informally describe the key problems
this restricted execution model introduces and, in so doing,
provide the intuition behind the two avenues for their mitiga-
tion that we will be exploring in the remainder of the paper.

3.1 Properties of dataflow

The slip-oriented execution model constitutes a fundamental
departure from the type of out-of-order execution provided
by conventional dynamically-scheduled machines. The Al-
pha 21264, for example, approximates, within the scope of
its instruction window, a dataflow-oriented execution model,
where only dataflow dependences constrain instruction exe-
cution. By contrast, slip-oriented execution introduces, in
addition to dataflow constraints, an in-order issue constraint,
which it imposes on subsets of all in-flight instructions.

This additional constraint interacts poorly with basic prop-
erties of dynamic dataflow. In general, dataflow is not uni-
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Figure 5. Live chains. The graph shows the cumulative distribution
of cycle-by-cycle counts of live-chains active in the issue queues of
our 4- and 8-wide monolithic baselines. The vertical lines highlight the
fraction of the distribution that is covered by 4 and 8 lanes. Data is
averaged across all 12 SPEC Integer benchmarks.

form in shape: not all instructions execute with unit latency,
and ILP is distributed unevenly in the instruction stream. As
a result, sustaining an IPC of IV generally requires simultane-
ously managing more than N chains of dataflow in the win-
dow. Figure 4 shows this effect at work in a fragment of the
gap benchmark. Immediately after cycle 1, there are 10 live
dataflow chains — 10 instructions which have no dataflow
predecessors in the window. Not all of those are ready to is-
sue at this time, so the achievable IPC is well below 10; but
they will soon become ready. In a dataflow-oriented execu-
tion model, each live instruction will be able to issue as soon
as it becomes ready, since it is only dataflow that constrains its
execution. The same effect can be achieved in a slip-oriented
model only if each live instruction reaches the head of an is-
sue queue by the time it is data ready. That, in turn, demands
either having enough lanes to buffer all the live chains, or
it demands carefully interleaving the live chains among the
available lanes. The former is an expensive prospect given the
data in Figure 5. A 4-wide machine, for example, would need
14 or more lanes if it is to have sufficient buffering more than
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Figure 6. The impact of lanes. The static dataflow diagram on the
left shows the body of a small, hypothetical loop. Dataflow edges are
labeled with the latency of the producing instruction. The timing dia-
grams — (a) through (d) — show dispatch and issue of two successive
iterations of that loop on various machines, all of which have 2-wide
front-end and issue bandwidth. Diagram (a) shows the schedule ob-
tained by a conventional out-of-order machine. Diagram (b) shows
the operation of a 2x 1w laned machine when instructions are steered
using a simple dependence-based policy. Immediately to its right, dia-
gram (c) shows the schedule obtained by a more sophisticated steer-
ing policy that interleaves live dataflow chains. Diagram (d) shows the
operation of the same dependence-based steering policy used in (b),
this time with an additional lane made available to it.

90% of the time. The latter is a patently hard problem, espe-
cially since the right interleaving must be effected at instruc-
tion dispatch time, well before execution times are known. In
the next subsection, we make these ideas concrete by way of
an illustrative example.

3.2 An illustrative example

Figure 6 uses a hypothetical code example to distill the key
factors that underlie the performance problems encountered
by laned machines on real code. The diagram shows the ex-
ecution of a small loop on machines with 2-wide fetch and
execute bandwidth. Assuming that no branch mispredictions
occur, the peak performance achievable on that loop is 1.6 in-
structions per cycle. The timing diagram in Figure 6(a) shows
that a conventional out-of-order machine can sustain that ex-
ecution rate. The flexibility afforded by a dataflow execution
model is key to its ability to do so: instructions are able to ex-
ecute as soon as their operands are ready; the order in which
they enter the window, and their location in the issue queue,
has no bearing in this regard. By contrast, the laned machine
shown in Figure 6(b) performs much worse because its in-
order issue constraint serializes ILP in the window. Specif-
ically, instruction D (and hence F and G) in lane L1 is pre-
vented from executing when its operand is ready because it

is blocked while instruction C waits for its operand from A.
The net effect is a complete serialization of successive loop
iterations, reducing sustained ILP to just above 1.

A more judicious allocation of instructions to lanes can
overcome these problems. It is the allocation of instruc-
tion C to lane L1 in Figure 6(b) that is responsible for the
performance losses, since it is this instruction that consis-
tently blocks the D-G chain. The schedule shown in Fig-
ure 6(c) shows how steering instruction C to LO exposes the
ILP available via the D—G chain. Although the 2-H chain now
takes slightly longer than necessary to execute, the resulting
IPC matches that of the out-of-order machine. This exam-
ple makes it clear that steering can have a profound impact
on performance, but also that good steering decisions are not
necessarily obvious. Indeed, the decision made in Figure 6(c)
required knowing, in advance, that instruction C should be
deliberately delayed in order to make room for instructions D
through G. Even harder, it required knowing that the delay im-
posed on C in sending it to lane LO would be small enough not
to outweigh the benefits of doing so. We will show in Sec-
tion 4 that any steering policy that can effectively interleave
live chains in this manner will be too complex to build.

An alternative means for improving performance is shown
in Figure 6(d). In this case, the addition of a third lane to
the machine permits even a simple steering policy to match
the IPC of the monolithic machine. This is possible because
the D-G dataflow chain can be steered in such a way that it
is no longer exposed to the in-order issue constraint. It is not
the added issue bandwidth that helps in this case, however,
but rather the improved ability to expose the live chains to the
issue logic: adding lanes increases the chances that an instruc-
tion will be at the head of a lane when it becomes data ready.
Of course, adding more lanes to a machine is not a very cheap
or efficient means for improving its ability to exploit ILP, es-
pecially when all the overheads of fusing cores are taken into
account. We explore this issue in Section 5.

4 Instruction steering

In this section, we focus on fused designs with a modest num-
ber of lanes. Our objective is to determine if it is possible
to develop a steering scheme capable of outperforming the
dependence-based policy evaluated in Section 2.3. We tackle
this problem with the benefit of hindsight, having already ex-
plored a large number of alternative heuristics, all of which
failed to do any better. In the process, we reached the conclu-
sion — as have others [13] — that this is not a problem for
which a simple heuristic will suffice. In this section, we put
that informal claim on a rigorous footing. In Section 4.1, we
introduce an abstract model for reasoning about fundamental
requirements for making good steering decisions. That model,
which is agnostic to microarchitectural details and to steering
policy specifics, permits us in Section 4.2 to distill the key fea-
tures required of any policy that aims to effectively distribute
instructions among in-order issue queues. We then show in
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Figure 7. A scheduling matrix. The matrix captures the state of a
laned machine at each cycle, in this case immediately before instruc-
tion ¢ is about to be steered. Rows of the matrix capture the progress
of time (time flows downward), and columns represent the machine’s
lanes. Assuming each lane is a 1-wide machine, each cell in the matrix
constitutes a single issue slot.

Section 4.3 that those features render such policies too com-
plex to build. In fact, their operation would amount to a form
of out-of-order scheduling, but of a strictly harder variety than
is implemented in out-of-order processors.

4.1 Reasoning about steering

As we noted above, our focus in this section is on machines
with a modest number of lanes. By this we mean machines
whose lane count matches aggregate front-end width, which
is smaller than the number of live chains typically active in
the window (recall Figure 5). In particular, we restrict our
discussion to the 4w—(4 x 1w) and the 8w—(8 x 1w) machines.
But the results that follow can easily be extended to machines
with 2-wide lanes; we do not do so here simply for the sake
of expediency.

Our framework for reasoning abstractly about steering is
founded on a simple observation: any steering policy induces
an instruction schedule when it distributes instructions among
the lanes, since sending an instruction to a lane implicitly de-
termines the time at which it will execute. The matrix in Fig-
ure 7 depicts this idea. It shows the state of a steering-induced
schedule just as instruction ¢ is about to be steered.

The line h(¢), which we call the (issue) horizon for instruc-
tion 1, represents the earliest possible time at which ¢ will be
able to issue. This is a function both of the time at which
1’s operands will be ready (denoted data(i)) and the time
at which ¢ is dispatched into the window (denoted disp(7)).
Specifically, h(i) = maz{disp(i), data(i)}. In addition to
its horizon, execution of ¢ is constrained by the current state
of the matrix: the most recently occupied issue slot in each
column imposes a lower bound on when instruction ¢ will be
able to execute at that column. This is of course an artifact
of the in-order issue constraint at each lane. We call the first
available issue slot at column c the frontier of that column,
and write f(c) to denote that slot. Each column’s frontier is

marked with an ‘F’ in Figure 7.

There are only 8 possible slots into which instruction ¢ can
be placed: one in each column. We call these the candidate
slots for i; each is marked with a ‘C’ in Figure 7. All of them
occur no earlier than both the horizon for ¢ and the frontier of
the corresponding column. That is, if we write ¢s(i, ¢) for i’s
candidate slot in column ¢, then ¢s(%, ¢) = maz{h(3), f(c)}.

Different steering choices will have very different repercus-
sions for instruction ¢ and for the ensuing state of the matrix,
and hence also for subsequently steered instructions. We can
capture those effects by means of a steering cost metric:

COST(i,c) = h(i) — f(c)

When the column to which ¢ is steered is clear (or not impor-
tant) from context, we will simply write COST ().

The cost metric will be negative when an instruction
becomes ready before a column’s frontier, in which case
COST(%) represents the number of cycles beyond its ready
time that instruction ¢ is delayed. The candidate slot in col-
umn H in Figure 7 is a case in point. We say a steering de-
cision incurs internal cost in such cases, thus reflecting the
notion that it is the instruction itself that pays the penalty. By
contrast, decisions for which the cost metric is positive will
be said to incur external cost, since these are liable to penal-
ize subsequently steered instructions. A positive cost implies
an instruction becomes ready only after the column’s frontier,
so sending it there effectively hides a number of issue slots
from other instructions. Sending instruction ¢ to column B,
for example, would incur external cost. The candidate slot in
column 2 is an example of a zero-cost steering decision: in-
struction ¢ is not delayed beyond its horizon, nor is any earlier
issue slot wasted by sending it there.

Note that external cost is entirely an artifact of the per-
column in-order issue constraint: steering an instruction to
an out-of-order core cannot incur external cost because issue
slots are not thereby obscured from subsequently steered in-
structions. We will see shortly that it is precisely the potential
for external cost that renders a good policy for laned machines
fundamentally hard to obtain.

4.2 Requirements for good steering

We now show that an effective steering policy must pick
columns by taking COST (i) into account and, more impor-
tantly, that it must do so from both an internal (negative) and
an external (positive) cost point of view; it is not sufficient to
take just one of them into account.

4.2.1 Internal cost

We take it as self-evident that paying heed to internal cost is
crucial to ensuring good performance.” If there is no con-

2More accurately, internal cost ought to be minimized for critical path
instructions and bounded for non-critical instructions. In both cases, however,
internal cost must be taken into account.



straint on how often steering costs are internal, then there will
be no constraint on the extent to which instructions are de-
layed beyond their issue horizons. This is an easy claim to ver-
ify. A policy which randomly allocates instructions to lanes,
for example, places no bound on the potential for negative-
cost steering decisions. Our implementation of such a scheme
incurs average slowdowns in excess of 70% relative to our
monolithic baselines.

The dependence-based policy we evaluated in Section 2.3
is, in fact, an example of a policy that takes internal cost into
account. To understand why, it is necessary first to explain
in a little more detail how that policy operates. It uses reg-
ister dependences among instructions to try slot consumers
immediately behind the producers of their operands. Specif-
ically, it sends an instruction to a non-empty lane if (one of)
its producer(s) immediately precedes it there; if no such lane
exists, it sends the instruction to an empty lane, perhaps first
stalling until one becomes available. In collocating an instruc-
tion directly behind its producer, the policy guarantees that
the instruction’s issue will be delayed only by that of its pro-
ducer — a constraint already imposed by dataflow. And in
sending instructions to an empty lane, it likewise guarantees
that only operand availability will constrain instruction issue.
These rules establish a simple invariant: instructions wait in
the issue queue only for their operands; the in-order issue con-
straint imposed by each lane is never exposed, being always
subsumed by dataflow constraints. More precisely, if instruc-
tion ¢ is steered to lane ¢, then COST (i,¢) > 0. We call this
the internal cost invariant.

The dependence-based policy’s stalling behavior is instru-
mental to maintaining this invariant. It is through stalling that
the policy ensures that instructions are never steered behind
independent instructions, and hence that they wait only for
their operands once they are dispatched. We can confirm the
importance of stalling — and thereby further confirm that in-
ternal cost is important — by evaluating schemes in which in-
structions that would otherwise cause the dependence-based
policy to stall are instead steered to a lane picked by some
heuristic. This amounts to occasionally slotting an instruc-
tion behind independent work. One of the best-performing
heuristics we found picks the least-full lane, an indicator
that it might drain soon, and therefore that internal cost
might be low. It performs substantially worse than the basic
dependence-based policy, increasing performance losses by a
further 12% on the 4-wide configurations and by more than
35% on the 8-wide machines.

Of course, stalling is not itself benign, since preventing dis-
patch of one instruction will delay that of younger, perhaps
data-ready, instructions yet to be steered. Indeed, we previ-
ously diagnosed these stalls as the principal cause of perfor-
mance problems in a complexity-effective scheduler design
closely related to the laned machines [15]. However, a simple
experiment suffices to show that stalls are, in fact, just a man-
ifestation of a more fundamental problem. We implemented
an oracular version of the dependence-based policy, one that

occupied issue slot

empty issue slot

frontier slot

will become hidden
from later instructions

candidate slot

L. picking the first lane to drain
incurs high external cost

Figure 8. The problem with dependence-based steering. At cycle
1, steering logic is about to dispatch instruction <. If : does not depend
on a value live at any frontier, it will be sent to column G, which is the
one that has just drained. This is precisely the choice with maximum
external cost.

never stalls, but which instead sends an instruction to the same
lane that the original policy would otherwise have stalled and
waited for. That is, the oracular policy knows ahead of time
which lane will drain first. Nevertheless, it performs no better
than the basic dependence-based policy, which means stalls
are hiding a more basic problem with dependence-based steer-
ing. That problem is external cost.

4.2.2 External cost

The dependence-based policy guarantees that its steering
costs are zero or positive, never negative. In a sense, it bounds
the cost of its decisions from below. But it cannot impose any
bounds from the other direction: the extent to which steering
decisions become largely positive — that is, external — is not
controlled. In fact, Figure 8 shows that it is liable to frequently
pick the slot that maximizes external cost. When it cannot col-
locate a consumer with its producer, it picks an empty lane —
precisely the one whose frontier is likely to be the furthest
away from the consumer’s issue horizon (instructions are not
always data-ready when they enter the window). Thus, while
choosing an empty lane is key to avoiding negative cost de-
cisions, it tends also to push cost into the positive dimension;
enforcing the internal cost invariant amplifies external cost.

At the root of this problem is the fact that the dependence-
based scheme has no means by which to take external cost into
account. Dataflow dependences, alone, are not sufficient be-
cause bounding the cost of steering decisions from above nec-
essarily requires knowing the frontier of each column. And
that demands knowing when the last instruction in each lane
will issue.

4.2.3 Optimizing both internal and external cost

The previous two sections argued that ignoring either the in-
ternal or the external dimension of steering costs is deleterious
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Figure 9. Optimizing both internal and external cost. The top
graph plots runtime of various machine configurations relative to that
of our 4-wide monolithic baseline (lower is better); the bottom graph
shows performance relative to the 8-wide monolithic baseline. The
‘2w 000’ and ‘4w 000’ bars in each graph show, for reference, the per-
formance of a monolithic machine half the size of the baseline. The
remaining bars show performance of different steering policies for the
laned machine: the idealized cost-optimizing policy (‘ideal’); that same
policy with oracular knowledge of load latencies replaced with predic-
tions from a load hit/miss predictor (‘pred’); and then finally with a static
latency prediction in which all loads are assumed to hit in the cache.

to performance. That is, taking both dimensions into account
is necessary for good performance. We now show that doing
so is also sufficient. We do so by examining an idealized steer-
ing policy in which we equip the steering logic with prescient
knowledge of the state of execution at each lane, including ex-
act knowledge of which loads will hit in the cache. In short,
we give the steering logic a precise view of the matrix its de-
cisions are inducing. We defer for the moment a discussion
of the implementation challenges such a policy would face in
practice.

Knowing the state of the matrix permits the idealized policy
to directly compute and optimize the cost metric for each of
its decisions. For each lane ¢, it computes COST (i, £), then
it picks, from among those that have a positive cost (i.e. no
internal cost), the one whose value lies closest to 0; if no such
lane exists, it picks the one whose negative value is closest
to 0. Such a policy will tend to optimize |COST(i)| since
it tends to avoid slots with extreme internal or external cost.
But it gives higher precedence to small positive values than it
does to small negative values, meaning it will always prefer

penalizing other instructions over penalizing the current one.
It is greedy in this respect.

Figure 9 (bars labeled ‘ideal’) shows this cost-aware pol-
icy delivers much better performance than the dependence-
based one (bars labeled ‘dep-based’), reducing an initial 60%
slowdown in the 4-wide configuration to about 15%, and an
initial 30% slowdown in the 8-wide machine to about 6%.
The 8-wide machine benefits the most because its higher lane
count affords the policy more flexibility in optimizing the cost
metric. The 4-wide machine offers little opportunity in this
regard, especially, for example, when the forward slice of a
cache-missing load blocks a lane, thereby consuming 25% of
the machine’s issue resources.

These performance figures are not the best that an idealized
policy can do. Indeed, we have implemented more sophis-
ticated (less greedy) policies in which internal and external
cost considerations are weighted differently based on the crit-
icality of each instruction. Although these policies perform
even better than the one we present here, we do not show data
for them because doing so would add no weight to our main
claim, which is that taking both dimensions of the cost met-
ric into account is sufficient for substantially improving per-
formance. Moreover, a more sophisticated heuristic will of
course be even more complex to implement; and, as we now
show, the greedy policy is already too complex to build.

4.3 Implementing cost-aware steering

Implementing our idealized policy — or, indeed, any policy
that takes internal and external costs into account — quickly
runs into a number of problems. The culprit, of course, is ex-
ternal cost. As we noted earlier, internal cost can be tackled
simply by taking dataflow dependences into account, but tar-
geting external cost, by definition, involves measuring the im-
pact a steering decision will (or might) have on instructions
that are not necessarily data dependent on it. Specifically,
it demands having some idea of where (in time) each lane’s
frontier resides, as well as where an instruction’s issue hori-
zon lies relative to that. Both of these are inextricably linked
to how dataflow in the lanes will be executed. The challenge is
knowing and using that information before execution actually
occurs — when steering decisions are made. This points to
the need for an approach similar to the dataflow preschedul-
ing techniques previously proposed for wakeup-free sched-
ulers [5, 13]. These maintain information on when each in-
flight instruction is expected to execute, and hence when its
results will be available.

In terms of our idealized policy, a prescheduling approach
would have to operate as follows when steering instruction ;
Figure 10 shows the steps graphically.

1. The issue horizon. Interrogate in-flight operand state to
determine the time at which each of i’s source operands
will be ready. The horizon, A(7), is the maximum of the
current time (disp(4)) and the time at which operands
will be ready (data(i)).
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2. Candidate slots. For each lane ¢, use h(i) and f(¥)
to compute cs(i,£), the earliest possible time at which
1 will be able to issue at £.

3. Pick a candidate slot. From among the lanes ¢ for which
COST(i,£) > 0, pick the one that minimizes external
cost. If no such lanes exist, pick the one that minimizes
internal cost.

4. Update state. If ¢ was picked at the previous step, update
f (@) to es(i, £) + 1. Also update operand state to record
the fact that the output register of 7 will be available at
time f(¢) + latency(i), where the latter term denotes the
expected execution latency of instruction i.

Thus expressed, two problems immediately come to the
fore. The first pertains to computation of latency(i) for
variable-latency instructions like loads. Returning to Figure 9,
the ‘pred’ and ‘static’ bars show that performance rapidly de-
grades when we compromise a little bit on the accuracy of
load latency information, and hence on frontier information.
The ‘pred’ bars show the impact of replacing oracular knowl-
edge of load latency with a load hit/miss prediction [17]; those
labeled ‘static’ show the effects of assuming all loads hit in
the cache. In the former case, both the 4- and 8-wide ma-
chines lose most of the performance won by the idealized in-
formation; both are now performing at close to the level of
the smaller monolithic machine. When static instruction la-
tencies are assumed, performance drops back to the levels of
dependence-based steering and, in the case of the 8-wide ma-
chine, to even worse levels.

A more fundamental problem with a prescheduling ap-
proach is exposed when we consider a superscalar implemen-
tation. The problem is that the steering decision for one in-
struction might depend on the outcome of its predecessors
in the same fetch packet. This is analogous to the problems
faced by register rename, and indeed by dependence-based

scheduling, but now the problem is more acute. Simply put,
prescheduling of multiple instructions cannot be performed
in parallel, nor pipelined across cycles, because the state that
seeds each decision (operand readiness and frontier informa-
tion) is not available until after each steering decision is com-
pleted. This is in contrast to register rename logic, which per-
mits back-to-back fetch packets to be renamed over succes-
sive cycles because the results of one packet (the new desti-
nation tags) are available after a single cycle. The analogous
requirement in prescheduling — the destination column for
an instruction — is not available until the entire scheduling
decision has been completed. The dashed line in Figure 10
delineates this critical loop. In this respect, the preschedul-
ing logic is more complicated than the wakeup-select logic
used in out-of-order machines, since the latter does not have
to schedule dependent instructions in the same cycle.

5 Adding more lanes

We saw in Section 3.1 that sustaining an IPC of N generally
demands managing more than N live dataflow chains at the
same time. Since only the heads of each issue queue are vis-
ible to the issue logic, effective management of those chains
in a laned machine equates to ensuring that each reaches the
head of an issue queue by the time it is ready to issue. We
showed in the previous section that doing so is not practicable
when there are fewer lanes than there are typically live chains.
The only remaining strategy, then, is to forego smart steering
and to equip the machine with enough lanes — specifically,
enough lane heads — to buffer all the live chains. We show in
Section 5.1 that the dependence-based steering policy, which
naturally ensures that live chains end up at distinct lanes, ben-
efits as expected from the addition of lanes. But it manages to
match monolithic performance only when lane count is high.
Moreover, this applies only in the context of our idealized ma-
chine model. If we take into account an overhead like global
communication, which is inevitably exacerbated by the addi-
tion of more lanes, those performance gains are quickly over-
whelmed. The picture is not entirely negative, however. We
show in Section 5.2 that supporting multiple in-order issue
queues per core, together with some modifications to the is-
sue logic, yields almost the same performance as many lanes.

5.1 Performance from more lanes

The dependence-based steering policy slots instructions di-
rectly behind a producer, or to an empty lane if that is not
possible. Live chains will therefore always end up at dis-
tinct lanes, a property which renders dependence-based steer-
ing a natural candidate for exploring the potential of a ma-
chine with many lanes. Figure 11(a) shows its performance
on machines with a 4-wide front-end and 4 or more lanes for
instruction execution.> Performance losses relative to the 4-
wide monolithic machine drop below 10% only at the 12x 1w

3For lack of space, we omit data on machines with an 8-wide front-end.
Their performance trends are very similar to those in Figure 11, however.
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machines, all with a 4-wide front-end, relative to our 4-wide monolithic machine. For reference, the ‘2w 000’ bar shows the performance of our
2-wide monolithic machine. The shaded portion of each bar shows performance in the absence of penalties introduced by fusion. The unshaded
portion shows additional slowdowns that would be incurred if a global communication penalty is imposed: we add 2 cycles for every 4 lanes we
add to the narrowest (leftmost) configuration. The graph on the right shows the effect of having more than one in-order issue queue at each
core. Each pair of bars shows the results of fusing 4 and 8 1-wide cores, first with 2 issue queues per core, then with 4 per core. The unshaded
portion of the bars shows the effect of a 2-cycle global communication penalty on the 8-core configurations.

and the 8 x2w configurations. In other words, we would need
to have more than twice as many lanes as front-end width be-
fore performance of a 4-wide monolithic machine is matched.
Note that these results are consistent with the data in Figure 5,
which showed that covering more than 90% of the live chain
distribution would demand 14 or more lanes.

The above results are optimistic, of course. At a mini-
mum, they assume that inter-lane (global) communication is
free. While one could argue that four 1-wide machines could
be floorplanned to perform inter-operation forwarding as effi-
ciently as a 4-wide monolithic machine, it is hard to believe
the same holds for eight or more cores. The unshaded portions
of the bars in Figure 11(a) show the relative execution time
when global communication penalties are introduced, 2 cy-
cles for every 4 additional lanes beyond the fetch width of the
machine. With a two-cycle forwarding latency, performance
of the 4w—(8x 1w) machine now lags almost 30% behind that
of a 4-wide monolithic processor; and modest increases in
that latency very quickly counter the benefits of adding more
lanes. Because a larger number of lanes exacerbates other
complexities of building a laned machine — among them,
the crossbar for steering fetched instructions to lanes, the dis-
tributed data cache, and static and dynamic power consump-
tion — it is difficult to build a compelling case for such ma-
chines.

5.2 Multiple lanes per core

The benefit of many lanes derives ultimately from the avail-
ability of issue queue slots for live chains, not from the ex-
tra issue bandwidth. One potentially appealing design point,
therefore, is to share issue resources among 2 or more is-
sue queues. This would provide steering logic with a suffi-
cient number of target issue queues and, at the same time,
would mitigate the problems of fusing too many cores. More-
over, such an approach might combine well with multithread-
ing capabilities in each core, which already demand buffering

capabilities for more than one instruction stream. But issue
logic would have to evolve from a simple in-order scheme to
one capable of selecting ready instructions from among more
than one issue queue. A natural candidate for such a scheme
is dependence-based scheduling [14], which picks ready in-
structions from among the heads of FIFO buffers. It is, in a
sense, a very small dynamic-scheduler, since the heads of each
FIFO buffer together constitute an out-of-order issue queue.
It is needed to achieve slip among the local issue queues, slip
that previously arose naturally through the decoupled nature
of execution at each lane.

Figure 11(b) shows the effects of adding a dependence-
based scheduler to our 1-wide in-order cores, each now
equipped with more than one issue queue. Performance re-
mains very close to that of buffer-equivalent laned machines.
The 4 x 1w machine, for example, when equipped with 2 FIFO
buffers per core, almost matches the basic 81w machine;
and 4 FIFO buffers brings it close to the original 16 x 1w ma-
chine’s performance. These results do not conclusively prove
that slip-oriented execution is a viable alternative to conven-
tional dynamic scheduling, but they do show that a modest
number of cores, together with reasonably modest enhance-
ments to the issue logic, can mimic the benefits of many lanes.
It remains to be seen whether those changes leave the design
simple enough to be more compelling than, say, fused ma-
chines that use small out-of-order cores as the unit of compo-
sition [6].

6 Conclusion

The idea that in-order cores might be fused, on demand, into
larger out-of-order processors is an extremely compelling one.
It would offer chip vendors an opportunity to design a sim-
ple and power-efficient in-order substrate from which aggres-
sive ILP processing capability can be dynamically synthesized
when, and if, it is needed. Such a chip would cater to a wide
variety of workloads, potentially serving all of them better



than would designs such as heterogeneous CMPs, whose rigid
partitioning is bound to fall outside the requirements of some
workloads.

We explored the prospects of such designs by evaluating the
performance potential of slip-oriented out-of-order execution,
the underlying execution model that characterizes these ma-
chines. We find that basic properties of dynamic dataflow fun-
damentally constrain that model. Specifically, matching the
performance of conventional out-of-order execution requires
the ability to monitor, and ensure prompt execution for, many
simultaneously-active chains of dataflow, many more than the
average ILP extracted from the program. As a result, modest
designs, which fuse a reasonable number of cores, and which
employ implementable instruction steering schemes, exhibit
best-case IPC performance well below that of smaller out-of-
order machines — designs we are able to build, at modest
complexity, already. It is, in principle, possible to do better
with more sophisticated steering policies, but the complex-
ity thereby introduced turns out to be no better than con-
ventional out-of-order issue logic; indeed, it appears to be
worse. Though configurations with a large number of cores
have better performance potential, the overheads introduced
by fusing so many cores would render them impractical. That
said, the ability to manage multiple (in-order) issue queues
at each core, which requires some modifications to the issue
logic, might be a compelling compromise between in-order
execution and full out-of-order capabilities at each core. The
ultimate appeal of such an approach depends on trade-offs
between performance, power and design complexity, all of
which require the exploration of more specific designs than
the broad class we examined here.
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