Investigating Student Plagiarism Patterns and Correlations
to Grades

Jonathan Pierce
University of lllinois

jmpierc2@illinois.edu

ABSTRACT

We analyzed 6 semesters of data from a large enrollment
data structures course to identify instances of plagiarism in
4 assignments. We find that the majority of the identified
plagiarism instances involve cross-semester cheating and are
performed by students for whom the plagiarism is an isolated
event (in the studied assignments). Second, we find that
providing students an opportunity to work with a partner
doesn’t decrease the incidence of plagiarism. Third, while
plagiarism on a given assignment is correlated with better
than average scores on that assignment, plagiarism is neg-
atively correlated with final grades in both the course that
the plagiarism occurred and in a subsequent related course.
Finally, we briefly describe the Algae open-source suite of
plagiarism detectors and characterize the kinds of obfusca-
tion that students apply to their plagiarized submissions and
observe that no single algorithm appears to be sufficient to
detect all of the cases.

1. INTRODUCTION

There has long been concern about widespread plagia-
rism! in undergraduate Computer Science courses in higher
education [16]. Previous work has used surveys to determine
that up to 90% of students admit to at least one type of aca-
demic integrity violation [16]. Here, we will choose to focus
on code plagiarism. Code plagiarism occurs when students
source their code from another party instead of writing it
themselves, often modifying the code somewhat from the
original source in order to attempt to evade detection. Pre-
vious work suggests that plagiarism rates for programming
assignments in U.S. universities to be upwards of 10% [8].

Coding assignments are particularly ripe for plagiarism.
Commonly, all students are given the same skeleton code
and functional specification. With the advent of increasingly

!Plagiarism is defined as “the practice of taking someone
else’s work or ideas and passing them off as one’s own” and
is generally considered a violation of academic integrity at
most U.S. universities.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGCSE ’17, March 08-11, 2017, Seattle, WA, USA
© 2017 ACM. ISBN 978-1-4503-4698-6/17/03. .. $15.00
DOIL: http://dx.doi.org/10.1145/3017680.3017797

Craig Zilles
University of lllinois
zilles@illinois.edu

large enrollments, auto-graded assignments with a piece of
software against a set of unit tests has become common.
Even if course staff does look at assignments by hand, large
enrollments mean that it is intractable to compare every pair
of assignments by hand.

Furthermore, plagiarism is greatly facilitated by the reuse
of assignments. Reusing programming assignments from
semester to semester is a common practice in large courses,
because doing so allows the assignments to be refined and
bugs to be fixed. This reuse, however, means that students
have many more sources from which to get a copy of the
assignment, including students from previous semesters or
students that upload their code to public code sharing web
sites (e.g., GitHub, Pastebin). Increased ease may make
plagiarism, for some students, a significant temptation.

Beyond moral arguments, plagiarism is a problem for sev-
eral reasons. First, many faculty respond to plagiarism by
making homework a relatively small component of the over-
all course grade, which gives exams a disproportionately
large weight compared to assignments [11]. Doing so makes
the course grade very sensitive to a small number of sam-
ples of student performance and can fuel test anxiety [18].
Second, plagiarism can contribute to grade inflation, if stu-
dents are illegitimately getting credit for assignments that
they couldn’t complete. Finally, if undetected, plagiarism
can facilitate students progressing through courses without
achieving the desired learning goals, which affects both their
ability to complete subsequent courses and program objec-
tives.

In this work, we seek to explore the behavior of students
that plagiarize in a number of dimensions. While there has
been significant previous work on plagiarism detection, we
found that most of it focuses on the development of effective
plagiarism detectors [4, 6, 7, 8, 9, 10, 15, 17]. In contrast, we
found little prior work analyzing the behavior and outcomes
of students who plagiarize. In this work, we make three
main contributions:

1. We characterize the ways that students attempt to
evade detection (by changing or obfuscating their sub-
missions relative to its source).

2. We characterize the plagiarism instances in a number
of dimensions, including whether the cheating is intra-
semester or inter-semester, whether partners were al-
lowed, and the occurrence of repeat offenses.

3. We analyze the correlations between a student’s pla-
giarism and their grades in the course as well as their
grades in a subsequent programming-intensive course.

Section 2 describes our data collection, our development of
an open-source plagiarism detector (Algae), and manual in-
spection/coding of the identified plagiarism instances. The
resulting labeled-for-plagiarism corpus is analyzed both in
isolation and in conjunction with grade information. Our
general findings are described in Section 3. In Section 4, we
describe the plagiarism detectors that make up the Algae
suite that were used in this work and report of their relative
effectiveness in detecting plagiarism.

2. EXPERIMENTAL METHOD

The research was performed at a large, public mid-western
university, primarily in the context of sophomore-level data
structures course. Features of this course include:

e It is a core course, early in the curriculum required for
all CS and CE majors.

e Hundreds of students took the course in each semester
that we investigated, providing a large data set.

e The assignments studied have remained essentially un-
changed for the semesters investigated.

e All assignments are in the same language (C++), per-
mitting the use of a single tool suite.

e Some course assignments must be done alone, while
others can be done with a partner.

We analyzed six semesters (Fall 2011 through Spring 2014)
of data from this course, including code repositories, per-
assignment grades, and final letter grades. In addition, we
were provided access to eight semesters (Fall 2011 through
Spring 2015) of final letter grades for a systems-oriented
programming course that is required for CS majors, for
which the data structures course is an immediate prereq-
uisite. This data encompasses 2,409 students in total.

All of the data was anonymized prior to delivery to us by
a third party. This anonymization deterministically mapped
all instances of each student’s university-issued identifier to
a specific random number. In this way, we could not know
the identity of the student responsible for any piece of data,
but we could still associate the elements of the different data
sets with the same individual.

This paper presents our findings from four of the program-
ming assignments in the data structures course. The other
assignments in the course were either found to be too sim-
plistic or had a solution space that was too narrow for us to
reliably infer plagiarism with confidence. The four assign-
ments studied include:

e list - An implementation of a list abstract data type
using a doubly-linked list, along with associated other
functions (such as a merge sort).

e quadtree - An implementation of a quadtree (where
each child corresponds to a quadrant of an image)
and associated functions (such as removing unneces-
sary nodes in order to compress an image).

e kdtree - An implementation of a k-dimensional binary
search tree, used to efficiently find the nearest match-
ing color in a set to a given color using nearest neighbor
search.

e maze - Students generate, solve, and render random
mazes and their solutions.

Instances of plagiarism were inferred® from the data set
as follows:

1. An open-source plagiarism detector called Algae [13]
was developed (Pierce) to identify plagiarism candi-
dates (i.e., suspicious pairs of assignments). Algae con-
sists of a suite of six different plagiarism detectors; in
Section 4, we briefly describe the detectors and report
on their relative effectiveness.

2. For each assignment, all six semesters of data was pro-
vided to Algae simultaneously; for each of the six de-
tectors, Algae returned up to 750 plagiarism candi-
dates, sorted by its perceived likelihood of plagiarism.

3. Each plagiarism candidate was inspected manually by
a member of our research team (Pierce) and classi-
fied as cheating or not cheating. The human inspec-
tor would classify as cheating instances where they be-
lieved that there was at least a 75% chance that one
assignment was derived from the other or if there was
at least a 75% chance that an assignment had been cre-
ated or processed by a computer program rather than
than written by hand (e.g., automatically obfuscated).

In the process of this manual inspection, we identified two
optimizations that significantly improved the efficiency of
classifying the candidates. First, we observed that plagia-
rism often occurred in clusters of many similar (or identical)
submissions, where presumably many people had access to
the same source (e.g., code that was uploaded to a public
GitHub repository). In such cases, many of the candidates
identified by Algae would be all of the combinatorial pair-
ings of such a cluster. We avoided manually evaluating all of
these pairings through auto-implication. After a submission
s1 was manually implicated for cheating, the system would
auto-implicate any other submission s3 where Algae ranked
the candidate pair (s1, s2) among its top 750 candidate pairs.
Note, auto-implication was not transitive.

Second, because clusters were inspected in sorted order
of similarity from highest to lowest, we could stop inspect-
ing when we stopped finding cases that we characterized as
cheating. We found Algae’s relative ranking of the candi-
dates to be reliable, permitting us to mark all lower ranking
candidates as not cheating after it was deemed unlikely to
find additional cheating cases.

As a result of these assumptions, in this text we will use
the terms “cheating” or “plagiarism” for brevity when in fact
we mean “presumed cheating” and “presumed plagiarism”.

3. RESULTS

Our analysis of the data structures assignments revealed
the presence of plagiarism at rates consistent with those
found in previous studies. While the cheating rate varied
from semester to semester (by as much as a factor of two),
there was no discernible pattern in the cheating rate over
time. Notably, the rate of cheating does not appear to be
increasing as the assignments continue to be reused.

2We did not have access to data with respect to plagia-
rism discovered and/or prosecuted during the offering of the
course.

Table 1: Distribution of cheating repeat offenders.

Number of Assignments

Student Plagiarized Fraction of Cheaters
1 64.77%

2 19.57%

3 10.18%

4 5.48%

In this section, we focus our analysis on: (1) the degree to
which students cheat on multiple assignments, (2) whether
they plagiarize from students concurrently taking the course
with them or from those in previous semesters, (3) what ef-
fect allowing students to work on assignments with a partner
has on cheating rate, and (4) the relationship between the
grades earned by cheaters and non cheaters.

Repeat Offenders: Asshown in Table 1, over half (64.77%)
of all students found to be plagiarizing did so only on one
assignment, with decreasing percentages cheating on two or
more assignments (as shown in Figure 1). Only 5.48% of
cheaters cheated on all four assignments we looked at. This
suggests that very few students are failing to do any assign-
ments on their own.

Cross semester: We found that a majority (57%) of the
clusters implicated for plagiarism contained students from
multiple semesters, while the remaining 43% of clusters con-
tained students from a single semester. While this data sug-
gests that one way to curb plagiarism is to not reuse assign-
ments between semesters, it could be that producing new
assignments doesn’t actually change the rate of plagiarism,
but merely shifts it to students having to cheat from stu-
dents taking the course concurrently. An interesting follow-
up experiment would compare the rate of cheating on newly
produced assignments with those that have been reused.

Partners: One of the assignments that we studied (kdtree)
allowed the students to work with another currently enrolled
student as a partner by documenting this partnership as
part of the submission. If this partners listing is mutual,
both partners are from the same semester, and only those
two students have similar code, Algae ignores any matching
between those two students for identifying plagiarism can-
didates. If, however, two students are partners and one of
them is found to have cheated, the second student is also
assumed to have cheated.

While many faculty might hope that by providing a legal
opportunity to collaborate with another student might re-
duce the incidence of cheating, this is not born out by our
results. The cheating rate on the kdtree assignment was
the second highest and almost tied for the highest rate of
the four assignments. Given such a small sample size, it is
hard for us to draw any real conclusions about the effects of
allowing or disallowing partners on plagiarism, but we find
this first data point to be surprising and disappointing.

Assignment Grades: Students identified as cheating on
a given assignment tended to do better (out of 100 points)
than non-cheating students on that assignment (as shown in
Table 2). However, the scores for students who plagiarized
tended to be much further from perfect than one might ex-
pect. This suggests that many times when students cheat,
they do not know if their source received a perfect score or
not.

Table 2: Average labs scores (by cheating found).

Assignment | Non-cheating Ave. | Cheating Ave.
list 83.42 84.57
quadtree 72.51 78.21
kdtree 82.04 89.97
maze 77.61 80.09
40
35 == cheating

w
o

non-cheating

N
w

B
o wu

Percentage of students
N
o

° \/\
[N
0)
1 2 3 4 5 6 7 8 9 10 11 12 13

12-point numeric grade scale

Figure 1: Final grade distribution of cheaters and
non-cheaters in the data structures course. Cheaters
tend to have fewer high grades and more low grades.

Course Grades: For overall course grades, we received the
letter grade and not the percentage used to compute that
letter grade. To permit us to compute average grades, we
mapped the letter grades we received to a 12-point scale,
where F, D-; D, D+, ..., A, A+ corresponded to 0, 1, 2, 3,
..., 11, 12 on the numeric scale. The distribution of final
grades for cheaters and non-cheaters is shown in Figure 1.

In contrast to the assignment grades, cheaters performed
worse in the class overall. The average grade for all students
was 8.29/12. For the cheaters that had final grades (those
that did not drop the course), the average grade was 7.73/12.
For the remaining honest students, their average grade is
8.44/12. Plagiarizing students do 0.71 points worse on the
12-point scale. This corresponds to roughly the difference
between an B- and C+. This difference while modest is
significant. A standard two-tailed paired T-test of the grade
distributions of cheating and honest students revealed them
to be statistically significantly different with p = 0.0186.

Furthermore, students tend to do worse the more assign-
ments that they cheat on (as shown in Table 3). Students
who cheated on all four assignments that we studied had an
average final grade of 6.39. At 1.59 points lower than the
non-cheating average, this difference is over twice as large
as the spread between cheaters and non-cheaters.

Of course, correlation is not causation. It could be either
that plagiarism causes lower grades (because students have
poor understanding of the material and do worse on exams
as a result), or it could be the case that poorer students are
more tempted to plagiarize in the first place.

Subsequent Course Grade: We also see cheaters having
lower performance in subsequent programming courses. Fig-
ure 2 shows the grade distributions (again on the 12-point)
scale, for the systems-oriented programming course, for each
of the cheater and non-cheater populations that continue on
to take that course. On average there is a grade depres-

Table 3: Average final grade (by cheating)

Number of Assignments | Average Final Grade
Student Plagiarized (on 12-point scale)
0 8.44
1 7.98
2 7.15
3 6.98
4 6.39
18
16 == cheating
214 non-cheating
2
s -
§ 4 —==—p
2
0

o 1 2 3 4 5 6 7 8 9 10 11 12
12-point numeric grade scale

Figure 2: Final grade distribution in follow-on
system-oriented programming course of cheaters
and non-cheaters. Cheaters tend to have fewer high
grades and more low grades.

sion of 0.89 points on a 0-12 scale. Again, while plagiarizers
did worse, they did not do hugely worse. However, this
data does seem to suggest that students who cheat tend to
fare worse in future classes (whether they cheated in them
or not). Another T-test over the cheating and non-cheater
grade distributions for the systems course revealed them to
be statistically significantly different with p = 0.00019.

4. ALGAE DETECTORS

The Algae® platform was developed to include a broad va-
riety of plagiarism detectors; the diversity of these detectors
allows us to characterize the degree of obfuscation that the
cheaters use to make their plagiarized submissions appear
different than the source text. In this section, we’ll describe
the salient features of each of the detectors and then present
results about the portion of plagiarized submissions each de-
tector captures.

4.1 Detector Descriptions

As we describe each of Algae’s detectors it is important
to note that most of the described detectors are either re-
implementations of pre-existing detection algorithms from
the research literature or greatly simplified detectors for
catching specific instances of plagiarism. We are describ-
ing the detectors, so that the reader can understand the
characterization of the types of obfuscation observed, which
is the contribution of this section of the paper.

Near-Identical (Lazy) The Lazy detector attempts to find
plagiarism where students have made little to no effort to
differentiate their submitted code from their source. It takes

3 Algae’s name was chosen in homage to the popular MOSS
system [15].

each submission, converts all text to uppercase removes all
comments, whitespace, and some extraneous punctuation —
();,9{} -7 — and then hashes the result using SHA-
256. This generates a single number for each file, and the
algorithm considers any pairs of files with the same hash as
plagiarism.

Identical Token Stream (IdentToken) The IdentToken
detector uses the Clang C/C++ compiler [2] front end to
convert a source file into a token stream, and some tokens
are replaced with generic substitutes to make the detector re-
silient to simple transformations (e.g., renaming variables).
Specifically, literal tokens are converted to a string specify-
ing the type (e.g., NUM, STRING, CHAR, BOOL), iden-
tifiers are encoded by their type (e.g., variable declarations
— DEC, variable references — REF, variable uses — USE),
and, like the Lazy detector, it removes comments, whites-
pace, and extraneous punctuation. Once transformed, the
file is again hashed and identical hashes are considered pla-
giarism. This detector is akin to an early detector that re-
quired identical token stream [6].

Modified Token Edit Distance (MTED) The Modi-
fied Token Edit Distance pre-processes the token stream the
same way as the IdentToken detector, with two additions:

e MTED only cares about code that exists within a func-
tion.

e MTED deterministically reorders functions by sorting
them in ascending order of contained token count (tie-
broken alphabetically by the function names). This
should negate the threat of a student re-ordering func-
tions in code in order to increase their edit distance
from their source.

MTED then computes the edit distance between every
pair of submissions using standard Levenshtein distance. In
this way, the detector is resilient to some non-trivial code
reorderings and other attempts at obfuscation. Algae stores
the the edit distances, sorts them, and returns the pairs with
the N smallest.

The MTED algorithm is similar to previous detectors that
use edit distance to compare tokenized code [4, 8, 9]. SIM [9]
differs from MTED in the effort that it uses to match func-
tions, where MTED merely sorts them by size. Other work [4,
15] explicitly avoids pairwise edit distance due to its com-
putational complexity (e.g., filtering using an inverted index
to find candidates for computing edit distance [4]), but we
found that even on a corpus of 2,409 students, it only took
around 12 hours to run the MTED detector. JPlag [14], a
spiritual cousin to MTED, computes edit distance by the
fractional coverage of shared substrings of tokens.

Inverted Token Index (InvToken) The InvToken de-
tector attempts to detect partial copying and/or extreme
reordering by using the same tokenization as IdentToken,
but looking for matching substrings instead of identical to-
ken streams. Specifically, each 12-gram of a token stream is
recorded. 12-grams that show up in 75% or more of the sub-
missions are discarded. The similarity of two submissions is
equal to the fraction of the 12-grams that were found in
both submissions, with the weight of each 12-gram inversely
proportional to the fraction of submissions containing that
12-gram across all submissions. Again, the N pairs with the
highest similarity are output by the detector. The InvToken

Table 4: Fraction of plagiarism cases (by detector)

Percent of Plagiarism

Detector Cases Detected

Lazy 15.69%

IdentToken | 18.49%

MTED 49.71%

InvToken 72.77%

InvIdents 67.35%

Obfuscation | 0.38%

detector uses an inverted index to quickly find shared sub-
strings, and so shares similarities to the popular [3] MOSS
program. MOSS differs from InvToken in that it (1) uses
a different pre-processor to generate the token stream, (2)
uses a winnowing algorithm to remove code that comes from
the assignment, and (3) treats every n-gram as having the
same weight [15].

Inverted Identifier Index (InvIdents) The Invldents de-
tector attempts to find plagiarism through identifying vari-
ables and functions that are named in relatively unique ways.
Using Clang, all of the identifiers in the source file are ex-
tracted, converted to lower case with any underscores re-
moved, and written to a file. Then the similarity of two files
can be computed based on the number of shared identifiers,
with the weight scaled based on the infrequency of the iden-
tifier, as was done in InvToken. As with all collectors, the N
highest scoring results are chosen for reporting to the user.

Statistical Individual Dissimilarity (Obfuscation) This
detector looks for features indicative of the code having been
obfuscated by a piece of software (e.g., [1, 5]), by collecting
a number of metrics from each submission and looking for
outliers. Specifically, Clang is used to collect the length of
the longest line, average identifier length, and the number
of lines, whitespace characters, comments, functions, #de-
fines, mathematical operations, and returns. For each of
these nine statistics, the mean and and standard deviation
are computed, and then a submission is flagged as likely ob-
fuscated if its sum of the absolute value of the z-scores for
each statistic exceeds a specified threshold.

4.2 Detector Performance

In this section, we report on the relative effectiveness of
the different collectors. A summary table is provided as
Table 4. Note that the percentages do not sum to 100%
because some cases were identified by multiple collectors.

Surprisingly, 15% of detected cheating cases were effec-
tively identical copies of other submitted works (Lazy). The
IdentToken detector performed only 3% better than Lazy,
which suggest that if students go to the effort to rename
variables, they are likely to make other obfuscations as well.

The obfuscation detector only found three students with
obfuscated code across all assignments. We should note that
none of these cases appear to have been professionally obfus-
cated by software. Instead, students appear to have applied
by hand many of the same transformations that a profes-
sional software code obfuscater would have. Overall, this
suggests that professional software code obfuscation is not
currently in practice by students in order to evade plagiarism
detection.

The MTED detector proved far more effective than the

trivial Ident Token and Lazy detectors (capturing nearly 50%
of all detected cheating), but less effective than the inverted
index based detectors (InvToken, Invldents). When evaluat-
ing MTED clusters, we tended to notice that it would find
matchings between people who “gave up” and only made
trivial changes to the handed-out boilerplate, because these
small code files would have small edit distances. This leads
to a lot of false positives, as the number of such clusters
grows quadratically with the number of students who have
near-boilerplate code.

The InvToken detector outperformed all other detectors,
catching 72.77% of all detected cheating. In several cases,
it was able to successfully catch students who had plagia-
rized only part of their code (typically the harder to imple-
ment functions), which is something that the MTED detec-
tor struggled with. Runtime performance of InvToken (and
InvIdents) was far better than that of MTED. Both detec-
tors took around an hour to run on our corpus, which is over
an order of magnitude faster than the MTED detector.

InvIdents also performed well, catching 67.35% of all de-
tected cheating. In general, it outperformed the MTED de-
tector, showing that shared identifier names are indeed a
viable way to detect cheating.

With all of MTED, Invldents, and InvToken, we noticed
that students did indeed often reorder functions. Therefore,
it is safe to assume that any effective cheating detector needs
to be able to handle this code transformation.

In Table 5, we characterize the overlap between each pair
of detectors. As expected, the Lazy and IdentToken de-
tectors have a high degree of overlap (as Invldents should
technically find a superset of the Lazy detector’s results).
Between MTED, InvToken, and Invldents, the highest de-
gree of similarity occurred between MTED and InvToken at
63% overlap, and the lowest occurred between MTED and
Invldents at around 40%. These results suggest (because no
two of these more advanced detectors have anywhere close
to 100% overlap) that in order to fully detect plagiarism,
multiple methods must be deployed.

S. CONCLUSION AND FUTURE WORK

Our key finding is that plagiarism appears to have a mod-
est, but statistically significant, negative correlation with
learning outcomes (as measured in terms of final course
grades). We find this to be true in both the data struc-
tures course in which the cheating instances occurred, as
well as a systems-oriented programming course taken later
in the CS curriculum. A key piece of future research would
explore this relationship to identify whether it is causal, and
in which direction. That is, are weaker students more prone
to cheating or does cheating weaken students.

In addition, we were surprised that our data suggests that
providing legal means for students to collaborate led to no
noticeable reduction in the rate of illegal forms of student
collaboration (i.e., plagiarism). We feel this non-intuitive
finding deserves more study.

In addition, our work suggests that cross-semester sharing
is a significant mechanism for plagiarism. While it is tempt-
ing to suggest that frequent development of new assignments
might reduce the plagiarism rate, our data can neither sup-
port nor refute this hypothesis. We believe a study that
compares the frequency and sharing patterns of plagiarism
of re-used assignments with fresh assignments would be in-
teresting future work.

Table 5: The percentage overlap between each pair of detectors, computed as the number of instances in

common divided by the minimum of the number of instances caught by each detector.

IdentToken | MTED | InvToken | InvIidents | Obfuscation
Lazy 62.83 30.77 23.41 19.61 0.00
IdentToken 40.66 29.15 21.15 0.00
MTED 63.03 39.48 0.83
InvToken 50.91 0.58
InvIdents 0.49

Finally, our research revealed that a significant portion of
cheaters put very little effort into avoiding detection, but
that more effective detectors are necessary to catch more
advanced cheating. No single detector was able to catch
more than 3/4 of total detected cheating (given the cluster
counts we used), suggesting that multiple methods need to
be employed for full effectiveness. While we believe that
Inverted-index systems like InvToken and MOSS [15] offer
the best combination of runtime performance and effective-
ness, the Invldents (which find the preservation of unique
identifier names) detector provides an important comple-
ment to those techniques and, in particular, proved useful
for distinguishing true positives from false positives while
evaluating clusters. We believe that extending that detector
to also consider comments and declared literals could further
improve its effectiveness.

5.1 Acknowledgments

The authors would like to thank A. Mattox Beckman, Jr.
and Cinda Heeren for their contributions related to this re-
search.

6. REFERENCES

[1] C/C++ Obfuscator. http://stunnix.com/prod/cxxo/.

[2] Clang: A C language family frontend for LLVM.
http://clang.llvim.org/index.html.

[3] K. W. Bowyer and L. O. Hall. Experience using
“MOSS” to detect cheating on programming
assignments. In Frontiers in Education Conference,
1999. FIE’99. 29th Annual, volume 3, pages 13B3—18.
IEEE, 1999.

[4] S. Burrows, S. M. Tahaghoghi, and J. Zobel. Efficient
plagiarism detection for large code repositories.
Software: Practice and Experience, 37(2):151-175,
2007.

[5] C. Collberg, C. Thomborson, and D. Low. A
taxonomy of obfuscating transformations. Technical
report, Department of Computer Science, The
University of Auckland, New Zealand, 1997.

[6] J. L. Donaldson, A.-M. Lancaster, and P. H. Sposato.
A plagiarism detection system. SIGCSE Bull.,
13(1):21-25, Feb. 1981.

[7] S. Engels, V. Lakshmanan, and M. Craig. Plagiarism
detection using feature-based neural networks.
SIGCSE Bull., 39(1):34-38, Mar. 2007.

[8] M. Freire, M. Cebridn, and E. Del Rosal. AC: An
integrated source code plagiarism detection
environment. arXiw preprint ¢s.I1T/0703136, 2007.

[9] D. Gitchell and N. Tran. Sim: A utility for detecting
similarity in computer programs. SIGCSE Bull.,
31(1):266—270, Mar. 1999.

[10] S. Grier. A tool that detects plagiarism in pascal
programs. SIGCSE Bull., 13(1):15-20, Feb. 1981.

[11] C. J. Hwang and D. E. Gibson. Using an effective
grading method for preventing plagiarism of
programming assignments. SIGCSE Bull.,
14(1):50-59, Feb. 1982.

[12] Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu, and
D. Wu. Value-based program characterization and its
application to software plagiarism detection. In
Proceedings of the 33rd International Conference on
Software Engineering, ICSE 11, pages 756-765, New
York, NY, USA, 2011. ACM.

[13] J. Pierce. Algae, 2015.
http://www.github.com/JonathanPierce/Algae.

[14] L. Prechelt, G. Malpohl, and M. Philippsen. Finding
plagiarisms among a set of programs with jplag. J.
UCS, 8(11):1016, 2002.

[15] S. Schleimer, D. S. Wilkerson, and A. Aiken.
Winnowing: Local algorithms for document
fingerprinting. In Proceedings of the 2003 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’03, pages 76—85, New York, NY,
USA, 2003. ACM.

[16] J. Sheard, M. Dick, S. Markham, I. Macdonald, and
M. Walsh. Cheating and plagiarism: Perceptions and
practices of first year it students. SIGCSE Bull.,
34(3):183-187, June 2002.

[17] G. Whale. Software metrics and plagiarism detection.
Journal of Systems and Software, 13(2):131-138, 1990.

[18] M. Zeidner. Test Anziety The State of the Art.
Plenum Press, 1998.

