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ABSTRACT
In this paper, we make three contributions related to the selection
and use of distractors (lines of code reflecting common errors or
misconceptions) in Parsons problems. First, we demonstrate a pro-
cess by which templates for creating distractors can be selected
through the analysis of student submissions to short answer ques-
tions. Second, we describe the creation of a tool that uses these
templates to automatically generate distractors for novel problems.
Third, we perform a preliminary analysis of how the presence of dis-
tractors impacts performance, problem solving efficiency, and item
discrimination when used in summative assessments. Our results
suggest that distractors should not be used in summative assess-
ments because they significantly increase the problem’s completion
time without a significant increase in problem discrimination.
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1 INTRODUCTION
Parsons problems were first proposed by Parsons and Haden [28]
as a method of facilitating the development of fundamental seman-
tic and syntactic concepts in introductory programming students.
These problems consist of individual blocks of code that must be
arranged in a specific order in order to construct a valid solution.
Code blocks that either contain errors or are not used in the final
solution, commonly referred to as distractors, were introduced in
the original and continue to be included in many studies involving
Parsons problems [6].
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One of the commonly cited principles for using distractors in
Parsons problems is that those distractors should reflect common
programming errors and misconceptions [6, 28]. Much like with
multiple-choice questions, distractor blocks are added to Parsons
problems with the intention of distracting students with plausible,
but incorrect alternatives. When included on homework assign-
ments the purpose of distractors is to correct common errors and
misconceptions students may have when writing programs without
having them deal with the full cognitive load of writing a program
from scratch [10, 17]. When included on exams, their purpose shifts
to providing an additional dimension by which to discriminate
based on student knowledge. As such, the selection of distractors
that accurately reflect common errors is important when pursuing
either of these goals.

The design and impact of distractors with respect to multiple-
choice questions has long been a topic of consideration given the
widespread usage of this question format. As summarized by Gierl
et al. [14], designing distractors is difficult for three main reasons.
First, it requires an experienced individual to write a large number
of plausible but incorrect options. Next, if distractors are too obvi-
ously incorrect it can limit the amount of thought students must
put into answering the question. This, in turn, limits the learning
potential of the question [22]. Finally, the quality of distractors
impacts the quality of feedback an instructor can receive from the
question on the misconceptions their class may hold.

Though experts may attempt to construct distractors based on
their perceptions of the issues students face when writing a given
line of code, expert-blind spots may make this an unreliable method
for generating distractors [27]. As such, one of the common meth-
ods by which distractors are created is by collecting common errors
or misconceptions from related short response questions [4, 15].
Though these are commonly collected from students responses on
test and homework questions, there are other methods by which
these responses can be collected at scale. For example, Scheponik
et al. [30] found that using open-ended questions posted on Ama-
zon’s Mechanical Turk was a useful method by which to collect
distractors for multiple-choice questions.

Towards extending the practice of leveraging errors made on
short answer responses, this paper presents a process of analyzing
such questions and automating the construction of distractors sets
for Parsons problems. Section 3 describes the process by which
common errors were analyzed from an introductory Python course.
Section 4 describes the system used to automatically generate dis-
tractor sets from a solution’s source code. Finally, Section 6 provides
preliminary comparison of the difficulty and item discrimination
of problems with distractors compared to those without on a large
introductory Python course’s final exam.
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2 BACKGROUND
2.1 Origins and Utility of Parsons Problems
The development of “Parsons Programming Puzzles” by Parsons and
Haden [28] was initially aimed at allowing for amore engaging form
of the type of practice drills that are common in other introductory
science and engineering courses. The purpose of those drilling
exercises, and by extension Parsons problems, is to facilitate the
development of fundamental programming skills. These include
the abilitiy to correctly identify correct syntax and create logical
constructs. As such, these programming puzzles were developed
with the following design goals in mind:

(1) Permitting common syntactic and logical errors.
(2) Addressing misconceptions through immediate feedback.
(3) Modeling good code.
(4) Constraining the logic used to solve a problem.

The combination of permitting common errors through the inclu-
sion of distractors and providing immediate feedback is used as a
method by which common errors can be addressed in a scaffolded
environment. Parsons problems have since gained traction given
their positive reception among students and instructors alike [9, 11].

Work done by the BRACElet project has suggested that skills
used in the solving of Parsons problems occupy a middle position in
their proposed programming skills hierarchy; specifically, between
the more advanced skill of code writing and more rudimentary
skills like code tracing [23, 32, 36]. However, a later study suggests
that the community hasn’t yet performed the experiments necesary
to justify how Parsons problems should be sequenced with other
kinds of questions [12]. Despite the limitations of the proposed skill
hierarchy, the role of Parsons problems in facilitating progression
through it are still of pedagogical interest due to the benefits found
by prior work.

Several studies have indicated that Parsons problems are both
more efficient and require less cognitive load while still achieving
the same learning benefits compared to practicing with code writ-
ing and code fixing exercises. Ericson et al. [10] compared Parsons
problems that require students to correctly indent blocks, code
fixing, and code writing problems on the basis of efficiency, ef-
fectiveness, and cognitive load. Efficiency was operationalized as
the amount of time needed to complete the problem, effectiveness
was the increase in performance between a pre and post test after
completing the set of treatment problems, and cognitive load was
measured using the CS Cognitive Load Component Survey [26].

2.2 Variations of Parsons Problems
Since their inception, many variations of Parsons problems have
been developed and evaluated. These investigations have primarily
focused on increasing efficiency and reducing cognitive load while
maximizing, or at least maintaining, the learning gains that Parsons
problems have been demonstrated to achieve [6].

There are two main ways in which distractors are included in
Parsons problems. The original method simply randomly placed
distractors in with correct blocks and left it to the students to
distinguish which they should use, a process that would come
to be known as jumbled distractors. Prior work has found that
including jumbled distractors leads to a decrease in efficiency and

completion while increasing cognitive load [13, 16] and increasing
the number of distractors made problemsmore difficult [9]. A recent
alternative to jumbled distractors involves visually grouping the
distractor(s) with the correct block of code they are associated with
which regains some efficiency making the need to select between
multiple options more explicit [5].

In addition to distractors, Parsons problems can be designed to be
insensitive to indentation for languages like C and Java, commonly
referred to as one-dimensional, or sensitive to it for languages
like Python, also referred to as two-dimensional [19]. Prior work
indicates that two-dimensional problems are more difficult than
their one dimensional counterparts [18].

Weinman et al. [34] has investigated the usage of “Faded Parsons
Problems”. These differ from traditional Parsons problems in that
they do not consist of static blocks of code. Rather, each block
contains some skeleton code with entry boxes for certain values
and symbols left to be filled in by the student.

Finally, recent work has investigated the utility of adaptive Par-
sons problems, where, as students submit incorrect responses, dis-
tractors are eliminated and correct blocks are combined. The pur-
pose of these problems is to progressively morph the problem to fit
the students current ability level [7, 8]. The goal of these problems
is to keep the student completing them in the zone of proximal
development [33], where students are challenged but still able to
progress rather than stagnating and becoming frustrated.

2.3 Role of Distractors
Despite the initial purpose of Parsons problems as a type of drilling
exercise, they have also been used as a tool for examination [21, 23].
Denny et al. [5] investigated the correlations between Parsons,
code writing, and tracing problems on an assessment and found a
particularly high correlation between students scores on Parsons
and code writing questions, suggesting they measure similar skills.
Additionally, they suggest that the errors made in a Parsons prob-
lem provide a more explicit indication of the concepts with which
students might be struggling. However, to the best of our knowl-
edge, no studies have investigated the effect of distractors on item
discrimination.

The concept of “desirable difficulties” has long been a considera-
tion when constructing test-items and learning activities [2, 3]. In
the context of multiple-choice questions on exams, the selection of
distractors can impact the retrieval processes necessary to solve the
problem [22]. The retrieval processes that occur during assessments
have been associated with increasing retention of the information
on which the student is being tested in what has come to be known
as the “testing-effect” [20, 29]. As such, the selection of effective
distractors is not only a concern in constructing questions that
effectively discriminate between high and low performing students,
but they may also play a role in maximizing a given item’s learning
potential.

3 CONSTRUCTING A DISTRACTOR
TEMPLATE SET

The construction of our sets of distactor templates begins with a
set of problems we refer to as “statement questions”. These ques-
tions require students write a single line of code that accomplishes
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Expr

value Subscript

value Attribute

value Name

id “lst”

attr “append”

slice Name

id “item”

(a) The full AST for lst.append[item] with the subtrees for the
list’s name and intended parameter highlighted.

Expr

body Subscript

value Attribute

value 1

attr “append”slice 2

(b) The partial AST for 1 .append[ 2 ]

Figure 1: A full AST and the partial AST that is capable of matching it

Figure 2: One of the statement questions analyzed for which
submissions were analyzed to construct distractor templates.

some task such as appending to an existing list (Figure 2). These
problems are much simpler to analyze than typical code writing
solutions as they restrict possible misconceptions and errors to the
one particular concept covered by a given question. In total, 42 of
these questions have been deployed thus far in the course from
which we draw our set of submissions on both homeworks and
exams with the questions covering the majority of fundamental
statements needed to write larger pieces of code in the Python
course. For the purposes of illustrating the tool and contextualizing
the pilot study detailed in Sections 5 and 6, we will focus on the
subset of statement problems constructed for list statements.

The set of submissions for each question from homework and
exams from four regular semesters and two summer semesters
(𝑁𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 = 2853) were parsed into Abstract Syntax Trees (ASTs).
These allow us to represent the structure of code while abstracting
away the specifics of the syntax used (e.g., spacing between com-
mas). Not all submissions were parsable into ASTs due to severe
syntax errors (e.g., unclosed parentheses, non-matching quotes).
Like Harms et al. [16], we omit these submissions and analyze only
the parsable submissions which account for 78.9%-97.9% (mean
90.1%) of the submissions to each statement question, since do-
ing so is unlikely to cause us to miss important distractors. This
provides us with more than 5,000 submissions for most questions.

In order to construct sets of templates that can be used to gener-
ate distractors for individual lines of code, we must first identify
sets of common errors that are associated with each statement. This
process begins by manually examining submissions to statement

questions, identifying errors that appear to be occuring frequently,
and defining a partial AST that matches all submissions in which
that error occured. For example, if we identify that students com-
monly mistake parentheses with brackets when appending to a
list, we would construct an AST for a statement that characterizes
that error, such as lst.append[item] (Figure 1a). Those subtrees
that are arbitrary are removed and replaced with wildcards (Fig-
ure 1b). In doing so, a partial AST is constructed that characterizes
the submissions that match the error 1 .append[ 2 ], where 1
and 2 are arbitrary placeholders for variables and parameters.
With the partial AST constructed, we can then use the structural
pattern matching supported natively by Python 3.10 to count all
submissions that match with this partial AST.

This process was continued until the remaining set of submis-
sions were too heterogeneous to find groups of similar errors. After
completing this process we are able to capture a significant por-
tion of each of the errors students encountered when attempting
common list statements, typically with a relatively small set of
groups (range 4-22, mean=10). We remove those submissions that
had an error unrelated to the function call (e.g., incorrect name,
wrong value) and display the portion of incorrect submissions ac-
counted for by the sets of distractor templates for list.append(),
list.count(), and list.remove(), that were used for the pilot
study in Figure 3.

4 AUTOMATICALLY GENERATING
DISTRACTORS

Using the distractor sets and the AST matching process introduced
in the previous section, this section presents a process by which an
individual line of source code can be automatically matched and
transformed into its associated set of distractor templates.

The process begins by constructing partial ASTs for the correct
form of each of the statements for which sets of distractor templates
were constructed. For example, if we want to support creating dis-
tractors for the append statement we would construct a partial AST
for 1 .append( 2 ). As shown in Figure 4, if a line of code is then
entered that matches this partial AST (e.g., numlst.append(item))
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Other Error
1 .add( 2 )
1 .append[ 2 ]
1 += 2
1 .append = 2
Other Group (N=9)

43.3%

14.7%
8.9%
5.5%
4.9%

22.6%

(a) Append Statement

Other Error
1 .pop( 2 )
1 .remove[ 2 ]
1 .pop[ 2 ]
del 1 [ 2 ]

4.8%

22.2%

7.8%
59.9%

5.7%

(b) Remove Statement

Other Error
1 = 2 ( 3 )
1 = 2 .count[ 3 ]
1 = 2 [ 3 ]
2 .count
Other Group (N=6)

36.4%

22.9%
8.7%

8.5%

7.3%

16.2%

(c) Count Statement

Figure 3: The percentage of parsable but incorrect submissions accounted for by each of the most common errors. “Other Error”
are errors that were not prevelant and therefore ignored. “‘Other Group” is a submission that is accounted for but less prevelant.
For “Other Group”, the number of groups collapsed into that category is shown along side the label.

numlst.append(item) 1 .append( 2 )

1 .append[ 2 ]

1 .add( 2 )

1 += 2

numlst.append[item]

numlst.add(item)

numlst += item

Matches

Has
Distractor
Templates

Instantiate
Distractors

A

B

C

Figure 4: Transforming numlst.append(item) into a set of
distractors.

that match can (A) be identified and (B) the set of distractor tem-
plates associated with the matched statement can be retrieved. The
final step (C) involves extracting and unparsing the subtrees from
the original line of code’s AST that are occupied by wildcards in
the partial AST. These subtrees represent the values that will be
placed into their respective positions in the distractor templates in
order to generate the final set of distractors.

5 METHODS
Three solutions (shown in Figure 5) were constructed using pro-

gramming patterns that students were already familiar with from
the course. For each of these problems, two Parsons problems were
constructed, one without distractors and the other with four distrac-
tors for the circled line. Those four distractors were selected from
the error categories uncovered by the analysis detailed in Section 3,
and Parsons problems with those distractors were generated using
the tool described in Section 4 [31]. Additionally, distractors were
jumbled in among the correct blocks rather than visually pairing
them.

These problems were included on the final exam for a large in-
troductory Python course (N=494) at a large, public university in
the United States using PrairieLearn [35] to administer the exams
and a Computer Based Testing Facility for proctoring [37]. The
course’s exams were computer-based and allowed students to sub-
mit answers for grading in real time, allowing for partial credit on
partially correct submissions. Students were randomly assigned
one of the six Parsons problems through exam versioning.

de f f i l t e r _ n um e r i c ( l s t ) :
nums = [ ]
f o r i tem in l s t :

i f type ( i tem ) in [ i n t , f l o a t ] :
nums . append ( i tem )

r e t u r n nums

(a) P1: Append

de f c oun t _ l ong e s t ( s t r _ l s t ) :
l o n g e s t _ s t r = ' '
f o r s t r i n g in s t r _ l s t :

i f l e n ( s t r i n g ) > l en ( l o n g e s t _ s t r ) :
l o n g e s t _ s t r = s t r i n g

count = s t r _ l i s t . count ( l o n g e s t _ s t r )
r e t u r n count

(b) P2: Count

de f r emov e _ l ong e s t _ s t r i n g ( s t r _ l s t ) :
l o n g e s t _ s t r = ' '
f o r s t r i n g in s t r _ l s t :

i f l e n ( s t r i n g ) > l en ( l o n g e s t _ s t r ) :
l o n g e s t _ s t r = s t r i n g

s t r _ l i s t . remove ( l o n g e s t _ s t r )

(c) P3: Remove

Figure 5: The solutions from which Parsons problems were
generated. The statements encircled in red are those from
which distractors were generated.

Students were given amaximum of 6 points for their first attempt,
3 for their second, and 1 for their third. However, partial credit
was given during each attempt. The score for a given attempt was
calculated by taking the total number of correctly placed blocks (𝐵𝑐 ),
subtracting the number of distractors selected (𝐵𝑑 ), and dividing
the difference by the total number of blocks in the correct solution
(𝐵𝑡 ). An indentation penalty was calculated by dividing the number
of correctly indented blocks (𝐼𝑐 ) by the number of blocks in the
correct solutions (𝐵𝑡 ) and finding the product of the two ratios
(Equation 1).

𝑆% =
𝑚𝑎𝑥 (𝐵𝑐 − 𝐵𝑑 , 0)

𝐵𝑡
∗ 𝐼𝑐

𝐵𝑡
(1)

For a given attempt, the number of points rewarded was calcu-
lated by multiplying the maximum number of points for the attempt
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With Distractors Without Distractors
N Mean SD N Mean SD U p

P1: Append 84 5.23 1.49 83 5.59 1.14 3952.0 >0.05
P2: Count 84 3.55 2.13 82 4.25 1.93 4105.0 <0.05*
P3: Remove 73 4.05 1.99 83 4.29 1.88 3175.5 >0.05

Table 1: Score comparisions between versions of problems
with and without distractors (out of 6).

With Distractors Without Distractors
N Mean SD N Mean SD U p

P1: Append 84 123.05 77.33 83 89.96 79.85 2057.5 <0.001***
P2: Count 84 271.38 174.10 82 217.75 194.66 2548.5 <0.01**
P3: Remove 73 179.57 106.00 83 156.37 156.28 2046.0 <0.001***

Table 2: Duration comparisions between versions of problems
with and without distractors (in seconds).

With Distractors Without Distractors
N Mean SD N Mean SD U p

P1: Append 76 122.84 76.07 78 89.02 81.04 1619.0 <0.001***
P2: Count 41 233.00 134.62 48 176.97 135.17 685.0 <0.05*
P3: Remove 46 164.34 101.94 46 114.48 80.35 567.0 <0.001***

Table 3: Duration comparisions for student who gave a cor-
rect submission between versions of problems with and with-
out distractors (in seconds).

by the difference between the score for the current attempt and the
previous best attempt.

Students were given feedback on each attempt using the system
introduced by Ihantola and Karavirta [19]. Blocks up to the first
error are highlighted in green. The first error is highlighted in
red if it is the wrong block or in yellow if it merely has incorrect
indentation. The remaining blocks remain grey.

6 RESULTS
6.1 Score and Duration Comparison
Both score and question duration statistics were collected from the
assessment platform. A Shapiro-Wilk test indicated our score and
duration data was not normally distributed. As such, we used Mann-
Whitney U tests, a non-parametric alternative to an independent,
two-sample t-test.

For the score results, all of the questions that included distractors
had lower average scores, but only one of three pairs had a sta-
tistically significant difference (Table 1). With respect to duration,
students spent more time on problems that included distractors
with all three pairs showing a statistically significant difference (Ta-
ble 2) with a moderate to low effect size (P1: 𝑑 = 0.42, P2: 𝑑 = 0.29,
P3: 𝑑 = 0.17). This finding holds even if we restrict our atten-
tion to students who ultimately reached a correct answer (Table 3)
and the effect size becomes consistently moderate (P1: 𝑑 = 0.43,
P2: 𝑑 = 0.42, P3: 𝑑 = 0.54). In summary, when distractors were
included, it increased the amount of time students spent on the
problem, decreased efficiency for those who did solve the problem,
but did not necessarily have a significant impact on score.

With Distractors Without Distractors
P1: Append 0.6448 0.5825
P2: Count 0.8108 0.7415
P3: Remove 0.8066 0.8867

Table 4: Item Discrimination - Pearson’s R coefficients be-
tween each Parsons problem score and exam score1

6.2 Item Discrimination Comparison
In keeping with the standards and practices of classical test theory,
we calculate discrimination as the Pearson’s correlation between
test scores and item scores [1]. 1 The correlation coefficients are
presented in Table 4. In general, items with discrimination between
0.4 and 0.7 are considered to be excellent [24, 25]. Both the versions
with and without distractors meet this criteria. P1 and P2 showed a
marginal increase in discrimination with the inclusion of distractors.
However, P3 showed a decrease in discrimination by including
distractors.

P3’s lower discrimination from distractors appears to be the re-
sult of students of awide range of performance selecting list.pop()
when list.remove() is required. This can be seen in Figure 6c
where we plot the number of submissions that included the distrac-
tors grouped by exam grade. In contrast, for P1 and P2 the majority
of distractors which were included in a student’s submission are in
the exams of students who failed the assessment. However, for P3,
we see that the pop distractor was frequently used in submissions
in the B-D range. Given students were only allowed three attempts
with some partial credit per submission, it is likely this distractor
is at least, in part, responsible for the decrease in discrimination.

In interpreting these results, it is worth considering the context
of the course and its curriculum. The append function was covered
early on in the course and used throughout many programming and
tracing problems in lecture, homework, and exams. Comparatively,
the count and remove were used far less. This lack of practice may
be partly responsible for many students (across grade group’s) in-
cluding distractors associated with the count and remove functions
but only students who scored poorly on the assessment selecting
distractors associated with the append function.

7 DISCUSSION
Overall, the results of this pilot study draw into question the utility
of including jumbled distractors in Parsons problems on summa-
tive assessments. If the intention of the summative assessment in
question is to reliably discriminate between high and low perform-
ing students the results presented suggest that the inclusion of
jumbled distractors does little to help in this endeavor. With only
small increases in the item discrimination (and a decrease in one
case), but a large, statistically significant increases in time taken on
those items that included distractors, it appears that not including
distractor on Parsons problems could enable the inclusion of addi-
tional problems. However, as discussed in Section 6.2, the limited
increase in item discrimination may be an artifact the high level of

1In calculating the test score, we omitted a subset of true-false and multiple-choice
questions related to general computing knowledge as presented in the course’s text-
book. The rationale behind this decisions is that those questions as they are currently
implemented on the test have a high degree of variance due to the large bank of
randomly assigned questions associated with each question generator.
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nums += item

nums.insert(item)
nums.add(item)

(a) P1: Append
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str_list.pop[longest_str]
str_list.pop(longest_str)
del str_list[longest_str]

str_list.remove[longest_str]

(c) P3: Remove

Figure 6: Occurences of distractors in submissions grouped by the overall exam grade they appeared on.

familiarity students had with those list statements at the time of
taking the final. Future work may consider how including jumbled
distractors in assessments and homework closer to when the topic
is learned influences the impact of jumbled distractors on efficiency,
performance, and item discrimination.

The findings of the pilot study showing that inclusion of jumbled
distractors in Parsons problems increases the time needed to solve
the problem is consistent with prior work [16]. Given previous work
has shown that including visually paired distractors can help reduce
the time needed to solve Parsons problems, future work should
consider the impact of visually paired distractors on efficiency
and performance when distractors based on common errors are
used. Should prior findings be replicated this may be a method of
improving problem solving efficiency and allow the focus to be
placed on investigating the impact of distractors on performance
and item discrimination.

Looking beyond the impact of distractors on item discrimination,
distractors can potentially be used to identify errors and miscon-
ceptions that are common across students of all performance levels
in the class. The ability to use distractors to make determinations
such as these is one of the commonly cited motivations for us-
ing them in multiple-choice questions, as such information can
be used to restructure lessons and curriculum [14]. Though this
study considers the use of distractors on exams, it is likely similar
information could be gleaned by including Parsons with distractors
on formative assessments.

8 LIMITATIONS
The primary limitation of the process for discovering distractor
templates and generating distractors from them, is that we are
limited to individual statements. As such, the process and tool
described does not currently support generating distractors relating
to conditional statements and loops.

With respect to the pilot study, the selection of problems is
reletively small and were presented to students at the end of the
semester, a point at which they were more familiar with each of the
statements under consideration. It may be the case that including
distractors closer to when topics are being learned increases the
item discrimination of the problem to a greater degree and does so
more consistently.

A final limitation that exists in the pilot study lies within an
error that was made when the tool was being constructed. Rather
than generating the distractor str_lst.count for P3 the distractor
longest_str_count = str_list.count, which was a far less
common error, was generated instead. However, given the errors
are similar it is likely the impact of using one less common error
as the basis for generating a distractor had minimal impact on
efficiency, score, or item discrimination regardless of the direction
of that impact.

9 CONCLUSION
In this paper we present a methodology for collecting distractor
templates and automating the construction of Parsons problems
with these templates. In doing so, we were able to account for a
significant number errors in student submissions on commmon list
functions and use them to automatically generate distractors for
Parsons problems that use those statements. The findings presented
in the pilot study indicate that the inclusion of distractors decreased
problem solving efficiency but did not have a significant impact
on score in two of the three problems presented. Including distrac-
tors caused a minimal increase in item discrimination and, in one
case, caused the item to become less discriminating. Future work
should further consider the impact of distractors on item statistics
throughout a semster in order to identify if and when they are most
effectively employed. Future work should also consider the role
that including distractors in Parsons problems have on learning
in formative assessments. Such findings would provide guidance
on where and when automatically generated distractors can most
effectively be deployed.
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