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Reducing difficulty variance in randomized assessments

Abstract

When exams are run asynchronously (i.e., students take it at different times), a student can
potentially gain an advantage by receiving information about the exam from someone who took it
earlier. Generating random exams from pools of problems mitigates this potential advantage, but
has the potential to introduce unfairness if the problems in a given pool are of significantly
different difficulty. In this paper, we present an algorithm that takes a collection of problem pools
and historical data on student performance on these problems and produces exams with reduced
variance of difficulty (relative to naive random selection) while maintaining sufficient variation
between exams to ensure security. Specifically, for a synthetic example exam, we can roughly
halve the standard deviation of generated assessment difficulty levels with negligible effects on
cheating cost functions (e.g., entropy-based measures of diversity).

Introduction

At many universities, introductory STEM courses are taught as large (200+ student) lecture
courses which presents many challenges, but summative assessment is one of the most significant.
While lectures and web-based auto-graded assignments scale gracefully, traditional pencil and
paper exams present challenges in the form of reserving space, printing exams, proctoring, timely
grading, and handling conflict exams [1-3].

To address this challenge of scale, some faculty are exploring alternative strategies to give exams.
Some universities have developed computer testing centers [3, 4] where students can reserve a
time to take their exam in a secure, proctored computer lab. Other faculty have elected to use a
commercial online proctoring service for their exams. Because of their geographically distributed
student populations, most MOOCS use online computerized exams as well. One advantage of
these exams is that they are offered by computer, which can both improve the authenticity of the
assessment (e.g., students can be asked to write code on a computer where they have access to a
compiler and debugger, unlike on paper) and the student work is provided in a digital format
which facilitates machine scoring.

In addition, all of these approaches generally offer asynchronous exams, where students can
choose when to take their exams. This is a very popular feature for students, as it gives them the
flexibility to take the exam at a time that is convenient for them, and it eliminates the need for the
course to manage conflict exams. It does, however, create an opportunity for collaborative
cheating [5], where a student taking the exam early provides information about the exam to a
student taking the exam later to give them an advantage. In the context of MOOCsSs, sometimes it



Model of Difficulty Levels for Generated Assessments
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Figure 1: Exams generated randomly from pools of problems are expected to have difficulty that
is normally distributed, if the problems are not exactly the same difficulty (left). The fairness of
the exams can be improved by discarding the exams from the tails of the distribution (right).

is the same student taking the exam both times using a strategy designated as Copying Answers
using Multiple Existences Online (CAMEO) [6].

Recent work has shown that the potential informational advantage from collaborative cheating
can be largely mitigated by introducing randomization into the exam [5]. Randomization results
in students getting different exams, so that the information passed from student to student is less
likely to be relevant. Chen et al. find that it isn’t sufficient to randomize just the parameters of a
problem, but having a small number of different versions of each problem (along with random
parameterization) appears to make the informational advantage statistically insignificant.
Randomization of problem selection and order has been previously used in the generation of
multiple-choice exams to prevent copying on pencil and paper exams (e.g., [7, 8]).

A concern with randomized exams, however, is fairness; we want to give each student an exam
with problems of roughly similar difficulty. Problems can be binned into pools by topic coverage
and difficulty, but it is challenging to generate problems of identical difficulty on the same topic
that are different enough so that having seen one doesn’t give you a significant advantage on the
other. It is thus desirable to have a mechanism that permits the generation of fair exams in the
presence of pools of problems with small difficulty variations.

If we naively generate exams via random draws from a collection of problem pools, we expect
that the distribution of exam difficulties will approximate a normal distribution as the number of
questions grows, as illustrated in Figure 1 (left-hand side). That is, there will be many exams
where the lucky draws (i.e., getting an easier than average problem from a pool) largely
compensate for the unlucky draws. The problematic exams are the ones at the tails of the
distribution, where an exam consists almost entirely of lucky or unlucky draws.

In this paper, we propose that the fairness of randomized exams can be improved by discarding
exams at the edges of the distribution, as illustrated in Figure 1 (right-hand side). Furthermore,
this filtering can be done without significantly impacting exam security, which was the reason that
the randomization was introduced in the first place. Specifically, we make three main
contributions:



Generated Assessment

Figure 2: Generating an example exam in PrairieLearn from three alternative groups. The first
exam slot selects a single question (Q1) from an alternative group containing three questions:
QI1, Q2, and Q3. The next three slots draw questions from a pool of six questions, and the final
two slots are filled with questions from a pool of four questions. The selection process happens
independently for every student.

1. we frame the fair random-exam generation problem in a manner that recognizes that the
fairness of an exam is a function of the student’s capabilities (in the next section),

2. we describe a straight-forward algorithm for reducing the difficulty variance in randomized
exams (in the Algorithm Section), and

3. we explore the trade-off between difficulty variance and measures of exam security of a
hypothetical exam using historic student data (in the Experimental Results Section).

We conclude with a discussion of related and future work.

The Fair Exam Generation Problem

In this work, we focus on a formulation of exam generation that models an implementation in
widespread use (e.g., around 20 courses) at our university. In this formulation, an exam is
specified as a series of slots, as shown in Figure 2. Each slot is associated with an alternative
group or pool of problems. A slot of size n contributes n questions to the exam, the same number
for every student. The questions for a slot are chosen from its alternative group, without
replacement. All of the problems in a slot are assigned the same point value and partial credit
schedule.

Fairness is a property of a collection of exams in relation to a group of students. We define an
exam as completely fair with respect to a given student if their expected score is the same for any
exam in the collection. Intuitively, the unfairness for a given student should grow with the



variance of that student’s expected scores across the whole collection of the exams. That is, the
more the student’s score depends on exactly which exam they receive the less fair the exam is.
Likewise, the unfairness of the exam as a whole should intuitively increase as the unfairness for
individual students increases.

In order to develop a useful fairness metric, it is important to recognize that the true variance of a
student’s expected score across the whole collection of exams is practically unknowable. No
student is going to be willing to take a enough exams from the collection for us to compute a
statistically significant variance. Furthermore, we want to estimate an exam’s fairness before the
students from a given class even take it the first time. To address these shortcomings, we make
two simplifying assumptions.

First, we assume that the current student population for a given class is not so different from
previous student populations. Said another way, the fairness metric for a collection of exams for a
previous population of students is a good predictor of its fairness for the current students. This
assumption allows us to use historical student exam performance data to estimate fairness of an
exam. Such historical data is often available in the context of randomized asynchronous exams, as
the randomization mitigates much of the traditional downside of re-using exam questions.

Second, we’re going to assume that exam fairness is a relatively smooth function of student
ability. That is, the fairness of a collection of exams for a strong student is well predicted by the
fairness perceived by other strong students, and the fairness for a weak student is well predicted
by the fairness perceived by other weak students. This assumption allows us to cluster students
into groups and estimate the fairness for that group, which allows us to use the exam score data of
that cluster to estimate the variance for individuals in that cluster even though they each only have
a single attempt on one exam from the collection.

It is important to note, however, we are not assuming that an exam collection is fair for all
students if it appears fair to the “average” student. It is well known in psychometrics that the
expected score on an item as a function of student ability (for example, as modeled by Item
Response Theory [9]) can vary wildly from question to question. Two items can have the same
overall average score, but one may have a much lower average score for the weakest students.
Which of these two problems is picked can have a significant impact on the expectation of a weak
student’s score and this variance should be interpreted as unfairness.

To account for this variation in fairness between student abilities, we compute fairness metrics at
the granularity of quintiles. Quintiles are commonly used for item analysis and strike a good
balance between separating distinct behaviors and not losing too much statistical power by
creating too many clusters. For a given quintile, we can compute the expected score for a specific
exam by summing up the expected scores of each item', as shown in Algorithm 1. To compute
the expected score for each item, we first break the students into five groups based on their overall
exam score (class quintile). We then calculate predicted scores for each question for each quintile
using data only from students in that quintile.?

IFor the purpose of this paper, we are going to ignore problem ordering, although that has been shown to impact
performance in some cases.

2If an item has not been previously used on an exam its average scores by quintile can be predicted from either
student average scores on homework if the problem was used for a homework or manually estimated by the instructor.



Algorithm 1 Computing the expected score for a given exam.
1: function MEAN_EXAM_SCORE_BY_QUINTILE(exam, quintile)
2: points =0
max_points =0
for ¢ in get _questions(exam) do
mean = question_score by quintile(q,quintile)
points = points + mean
max_points =max_points + get max_points(q)
end for
9: return points/max_points
10: end function

N hRw

We then define the unfairness of a collection of exams for a given quintile as the standard
deviation of the expected scores for that quintile across all of the exams.

To be clear, a collection of exams is not necessarily unfair if there is high variance in the student
scores when students are given different exams from this collection. We expect such a variance in
score resulting from a variance in student abilities. We consider an exam as unfair if the students
would have scored significantly differently had they received a different random exam.

Furthermore, in our opinion, it is not necessary to entirely eliminate unfairness from
randomization. It is sufficient to make it small enough so as it doesn’t dominate the other sources
of uncertainty involved in testing (e.g., uncertainty resulting from the particular selection of topics
for the exam from all of the topics that were covered in the class).

Algorithm

With a clear definition of unfairness, it is rather straightforward to develop an algorithm that
reduces variance relative to naive random exam generation by discarding outlier exams. Our
algorithm uses a Monte-Carlo approach to estimate the mean and standard deviation of each
quintile’s expected score of the full collection of exams, as specified by the exam specification.
Using these computed standard deviations as a guideline, the instructor sets a threshold for the
allowable exam variance. If a randomly-generated exam lies outside these thresholds, it is
discarded and new exams are generated until one meets this acceptance criteria.

Pseudocode for the algorithm is shown as Algorithm 2 for clarity. First, the
estimate_exam_collection_means_and_sds method generates a sample of n random
exams. Using the previously described mean_exam_score by _quintile method, the mean
scores are computed for these exams by quintile. Then the mean and standard deviation of this
sample are computed and returned.

When we filter exams, we only keep an exam if, for all quintiles, it has a predicted score that is
within a specific range of the mean generated exam score for students in that quintile. The range
of valid exams is specified as a fraction of the original standard deviation and this fraction is an
instructor specified parameter. Pseudocode is shown as the i s_exam_valid method of
Algorithm 2.



Algorithm 2 Assessment Filtering Algorithm
1: function ESTIMATE_EXAM_COLLECTION_MEANS_AND_SDS(n)

2: FE = generate_random_assessments(n)

3: scores =[]

4: avgs =[]

5: sds = || // standard deviations

6:

7: /I calculate mean scores for randomly generated exams
8: for: =1to5do

9: for j =1tondo

10: scores|i][j] = mean_exam score by quintile(FE]j],q)
11: end for

12: avgsli] = avg(scoresli][l..n])

13: sdsli| = std_dev(scores]i][l..n])

14: end for

15:

16: return avgs, sds

17: end function

18:

19: function IS_ EXAM_VALID(e, avgs, sds, num_sds_parameter)
20: fori =1to5do

21: score = mean_exam_score by quintile(e,i)

22: if |score — avgs|i|]| > sds[i] - num_sds_parameter then
23: return false

24: end if

25: end for

26: return true

27: end function

Selecting the number of standard deviations (num_sds) parameter represents a trade-off between
fairness and security. As one decreases this parameter, the fraction of exams that are considered
outliers (and hence discarded) increases, which in turn increases fairness. But as exams are
discarded, there is potentially less and less variation between exams, reducing the benefit of
randomization in mitigating the informational advantage of collaborative cheating. In the limit,
all exams but one are discarded and complete fairness is achieved at the expense of no mitigation
of collaborative cheating.

To aide instructors in setting this parameter, our implementation provides an interactive tool to
visualize how changing this parameter changes the resulting distribution of exam difficulties and
fraction of exams that are retained (shown in Figure 3). If the instructor is not satisfied with the
trade-off between fairness and security, they can modify the alternative groups in the exam
specification to give the algorithm more choices.
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Figure 3: The num_sds (cutoff) parameter selection page, used by the instructor to select an
appropriate value for the num_sds parameter for a specific assessment. In the above diagram, we

are filtering out about 25% of exams that have a difficulty level (averaged over all students) below
and above the average.

Experimental Results

In an ideal world, we would be able to significantly reduce the unfairness of randomized exams
with minimal impact on exam security. In this section, we explore the relationship between these
two variables using a synthetic exam constructed from real student data and sweeping the
num_sds parameter from one extreme to the other.

The data that we use for our synthetic exam is drawn from a large-enrollment sophomore-level
engineering class at a public U.S. university. In this course, the computerized exams [10] are
made up of auto-graded problems that take numerical answers; students are given multiple
attempts to answer questions with partial credit given if answered correctly on a second or later
attempt [11]. Some of the exam questions were given to every student (i.e., an alternative group
size of 1). By constructing our synthetic exam out of only these questions, we can compute the

actual exam scores for all students for every possible exam that could be generated from the exam
specification.

We constructed an exam specification that included 5 slots, each of size 1, yielding a 5 question
exam. Exams of this length are common in this class, which offers 1-hour exams every two
weeks. Each slot draws from its own distinct alternative group and the alternative groups range in
size from 3 to 8 problems. All slots were assigned the same number of points.

No effort was made to match the difficulty of the problems in the alternative groups, so this
workload represents a challenging scenario for an algorithm attempting to ensure fairness. If the
algorithm can be successful in this scenario, then it reduces the pressure on instructors to come up
with many questions of equal or similar difficulty to put in an alternative group.



Num-sds vs. Reduction in Difficulty Level Standard Deviation

2.75 A

N
U
o

N
N
[

Reduction amount
!—' N
~ o
ul o

=
U
o

=
N
[

ofz Ot3 Ot4 015 0?6 0?7 OTS 0f9 ltO
Num-sds
Figure 4: The reduction in the standard devi-

ation (SD_diff) grows linearly as we reduce
our control parameter num_sds.

Num-sds vs. Num exams kept with new algorithm

0t2 0?3 074 0:5 0:6 0:7 OtS 0?9 1?0
Num-sds
Figure 5: As we reduce the num_sds control

parameter, the number of exams remaining de-
creases almost linearly.

Improved Fairness (SD_di ff)

Our main success metric will be called SD_di f £, which is the decrease in the standard deviation
of the filtered collection of exams relative to the complete set of randomized exams. Specifically,
SD_diff is computed as follows.

Let £ be a set of 10000 generated exams, and £’ be the subset of these exams that remain after
filtering. That is, the exams in £’ are those for which TS_EXAM_VALID () (Algorithm 2) returns
true. Now take X to be a random variable giving the difficulty of an exam drawn at random
from F, and X’ the corresponding random variable for £’. Then we define

SDdiff =o(X)—o(X'), (1)

where o (X) is the standard deviation of X.

As shown in Figure 4, our parameter sweep of our control parameter num_sds demonstrates that
it has a roughly linear relationship with the reduction of the standard deviation (SD_diff).
Moreover, we find that the lowest performing quintiles have the largest variance and that the
largest contributions to the SD_di f f come from mitigating this variance.

Number of exams kept

Figure 5 shows the relationship between our control parameter, num_sds, and the number of the
original 10 000 exams that are retained. We see a roughly linear relationship between the
num_sds parameter and the number of exams remaining after filtering, with 0.2 effectively being
the limit for num_sds because at that point almost all of the exams have been eliminated.

The number of exams remaining, however, is not a good proxy for the security of the exam. Exam
security can be high even with a small number of exams if all of the problems in each alternative
group are still well represented across the exams.
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have little impact on entropy, but the entropy nificantly reduced (up to SD_diff of 2.25)
cost function grows rapidly as num_sds is de- with no loss of entropy, but further reductions
creased below 0.4 quickly increase the entropy cost function.
Security (Entropy)

A better metric for the extent that exam variation has the potential to mitigate the informational
advantage of collaborative cheating is a metric like entropy. The entropy of a probability
distribution is a measure of the average surprise that we incur when taking a sample from that
distribution. So if we maximize the entropy, then we have maximized the surprise that a student
will experience when seeing a randomly generated exam. If a distribution has low entropy, then a
student could effectively predict which questions are likely to be on their exam.

We compute entropy as follows. Consider an exam specification with n slots and m,; questions in
the alternative group for the i*" slot, where i € {1...n}. Let S; be a discrete random variable
with possible values {q1, go, - - - ¢, } representing the questions that a student could get in slot .
Then a total entropy value across all slots can be defined as:

H=3"S" 1. P(S, = ) - logy(P(5, = ). @

i=1 j=1

This can be simplified to:
H ==Y P(q)log,(P(q)). ®)
qeQ

However, since we want entropy to be high (more randomness in the generated exams), rather
than low, we can define an entropy cost function as
1 1

CEHT TS P om(PW) @

We find that, initially, removing exams by lowering the num_sds control parameter has almost
no impact on entropy, but at around 0.4 there is a knee in the curve and entropy decreases
drastically (our entropy cost function increases drastically), as shown in Figure 6. We explored
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Figure 8: With a control parameter value of num_sds = 0.4, there is a striking difference in
the distribution of difficulty levels for randomly generated exams. The variance in assessment
difficulty levels has been reduced significantly.

other potential security metrics (e.g., metrics based on the probability of overlap between a pair of
exams and based on the expected benefit of memorizing the n most frequently encountered
questions) and found our results to be highly insensitive to the choice of metric. All of the metrics
consistently had a knee in the curve around num_sds = 0.4.

Figure 7 shows the trade-off between SD_di f £ and inverse entropy. From this plot, we find that
setting num_sds to 0.4 seems to be a sweet spot for this workload, maximizing the increase in
fairness that can be achieved (SD_diff = 2.3) for a negligible loss of security. Figure 8
compares the distribution of difficulties for the original collection of exams to that of the
distribution of difficulties for the exams filtered using num_sds = 0.4. It can be seen that the
standard deviation is shrunk to less than half of its original value.

Related Work

Two streams of related work are worth noting, but they are focused on very different contexts.
The first is the breadth of work using Item Response Theory (IRT) [9]. Using IRT, it is not
necessary to give students exams of equivalent difficulty, as long as all of the items have been
calibrated. Instead, given the item response functions for each of the items and a student’s score
on each of the items, a maximum likelihood estimate for the student’s latent ability can be
computed, which can be mapped into a score for the exam. IRT is commonly used for high-stakes
standardized exams like the SAT and ACT.

The main drawback of IRT models is the lack of transparency that they have for students in
understanding their scores. Unlike common college exams, where each question has a point value
and the students score is the sum of the points on the individual questions, items on an IRT exam
do not have an obvious point value and the influence a given question has on a student’s score is
dependent on whether they correctly answered other questions. While we don’t doubt the
effectiveness of the IRT methods, we believe that scoring college exams using IRT is politically



untenable with students.

The other line of research that is tangentially related are algorithms for composing exams from
large banks of test items (e.g., [12, 13]). These algorithms are generally provided items that have
rich meta-data indicating the difficulty, average solution time, and coverage of different topics
along with an exam specification indicating the desired minimum coverage of each topic, the
target difficulty, and a minimum and maximum time length. The proposed algorithms perform
heuristic searches for optimal exams, because exact solutions are NP-hard. Again, this work is
more suited for a high-stakes standardized exam context where items can be characterized in the
necessary manner.

Conclusion

In this paper, we have demonstrated a straight-forward algorithm for reducing the difficulty
variance in a collection of randomized exams. Our synthetic exam experiment suggest that
unfairness can be reduced by a factor of two, with only a small reduction in the security of the
exam, as predicted by the exam’s entropy. We find this result to be rather exciting, because the
potential benefit is significant for the code complexity involved. We hope our implementation will
go into production this coming semester, where it can positively impact tens of courses on our
campus.
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